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Abstract:
Introduction: Oral and oropharyngeal cancers are the most common types of head and neck cancers, with over 90%
originating  from  squamous  cells  in  the  mouth  and  throat.  Chronic  tobacco  and  alcohol  use,  inflammation,  viral
infections, betel quid chewing, and genetic predisposition are major risk factors for OSCC, which kills over 100,000
patients  annually.  Epigenetic  mechanisms,  such  as  DNA  methylation,  can  silence  tumor  suppressor  genes,
contributing to cancer progression and patient outcomes in Oral Squamous Cell Carcinoma (OSCC). This study aimed
to predict prominent methylation signatures that can distinguish OSCC from normal cells.

Methods: Machine learning algorithms, like Support Vector Machine (SVM), Random Forest (RF), and Multilayer
Perceptron (MLP), were implemented using R packages and a balanced training dataset consisting of M-values of
methylated CpG sites from 46 matched OSCC and normal adjacent tissue samples.

Results:  MLP model  demonstrated  the  highest  accuracy  of  92% on  the  training  dataset  and  100% on  the  blind
dataset, even with a reduced feature set of just 10 significantly differentially methylated CpG sites.

Discussion: Despite the high burden of oral cancer in South America, and an alarming trend of rising number of
cases,  research  into  this  particular  area  is  sorely  lacking.  This  work  aims  to  address  the  issue  by  performing  a
machine learning-based analysis of methylation patterns, a major established factor, in oral cancer datasets obtained
from Brazilian patients. However, the lack of experimental evidence supporting the results of this analysis can be
considered a significant limitation of this study.

Conclusion:  A highly  accurate  and  generalizable  machine  learning  model  was  developed  using  the  Multi-Layer
Perceptron  with  multiple  layers  (MLP-ml)  algorithm,  which  achieved  an  accuracy  of  95%  on  an  independent
validation dataset of 15 OSCC tumors and 7 non-tumor adjacent tissue samples. Machine learning algorithms can
therefore  provide  valuable  insights  into  biological  datasets  that  may  be  overlooked  by  regular  bioinformatics
workflows.
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1. INTRODUCTION
Oral  and  oropharyngeal  cancers  are  the  two  most

common types of cancer that develop in the head and neck
region,  and  more  than  90%  of  these  cancers  originate

from the flat, scale-like squamous cells found in the lining
of the mouth and throat. After initiation, tumour cells can
deeply invade the local structures and lymph nodes of the
neck, leading to further distant metastases even into the
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aero-digestive tract of the patients, all of which increases
the  chances  of  potential  recurrence  of  oral  cancers  [1].
Epigenetic  mechanisms  that  result  in  dysregulation  of
gene expression have been found to play a major role in
Oral Squamous Cell Carcinoma (OSCC) [2], which claims
the lives of more than 100,000 patients worldwide every
year [3]. Chronic tobacco and alcohol use, which can have
a  direct  impact  on  epigenetic  regulation  of  gene
expression,  constitute  two  major  risk  factors  for  OSCC
tumorigenesis,  along  with  other  prominent  factors  like
chronic  inflammation,  viral  infections  (human
papillomavirus or HPV), betel quid chewing, and genetic
predisposition [4, 5]. It is, therefore, of critical importance
to  understand  the  role  of  epigenetic  alterations,  like
aberrant  DNA  methylation,  in  the  initiation  and
progression  of  OSCC.

DNA methylation is a key epigenetic modification that
can silence tumour suppressor genes, contributing to the
development  and  subsequent  progression  of  different
types of cancers, including breast, lung, colon, and ovarian
cancers  [6-8].  DNA  methylation  alterations,  such  as
hypermethylation  of  tumour  suppressor  genes,  are
commonly  observed  in  oral  squamous  cell  carcinoma
(OSCC),  and  are  known  to  influence  cancer  progression
and  patient  outcomes  [9].  In  addition,  increased
expression  of  DNA Methyltransferases  (DNMTs)  is  often
observed in oral cancers, leading to gene inactivation and
chromosomal  instability  [10].  DNA  Methyltransferases
(DNMT) are enzymes that catalyze DNA methylation and
play  a  role  in  its  initiation  and  maintenance.  After  DNA
replication,  DNMT1  is  responsible  for  transferring
methylation patterns to the newly-synthesized DNA strand
[11]. Conversely, DNMT3A and DNMT3B participate in de
novo  methylation  [12,  13].  Nevertheless,  it  has  been
demonstrated  that  in  addition  to  DNMT1,  DNMT3A  and
DNMT3B  are  also  necessary  for  the  creation  and
maintenance  of  methylation  patterns  [14].  Ten  Eleven
Translocation  (TET)  proteins,  on  the  other  hand,  inhibit
DNMT activity.  Cytosines can be demethylated by TET1,
TET2, and TET3 via a sequence of reactions, oxidizing 5-
methylcytosine  to  5-hydroxymethylcytosine  [15].
Furthermore,  research  suggests  that  Thymine  DNA
Glycosylase  (TDG)  and  Activation-Induced  Cytidine
Deaminase (AICDA) are also involved in the demethylation
process [16, 17]. Interestingly, HPV oncoproteins E6 and
E7  can  interfere  with  the  activity  of  DNMTs,  which  can
lead  to  changes  in  methylation  patterns  across  the  host
cell  genome,  further  emphasizing  the  potential  role  of
oncogenic  HPV  infection  in  inducing  OSCC  [18].
Epigenetic drugs like DNA methyltransferase-1 (DNMT1)
inhibitors  have  shown  promise  in  cancer  treatment  by
modulating  aberrant  DNA  methylation  patterns  [19].
Targeting DNA methylation through DNMT inhibitors may,
therefore, offer a novel therapeutic strategy against OSCC
[20].

In  general,  it  has  been  observed  that  global  DNA
hypomethylation  contributes  to  the  process  of  OSCC
tumorigenesis  through  multiple  potential  mechanisms,
including the reduction of methylation at DNA repetitive

elements  leading  to  chromosomal  instability  and  the
demethylation  of  some  methylation-silenced  promoter
regions  of  proto-oncogenes.  Furthermore,  specific
methylation  patterns  have  been  associated  with  tumor
differentiation  and  nodal  involvement,  leading  to
Differentially  Methylated  Regions  (DMRs)  being
recognized as potential biomarkers for early detection and
prognosis in oral cancer, with specific genes like DAPK1
and TIMP3 showing significant associations with clinical
outcomes [21].

Machine learning algorithms, such as Support Vector
Machine (SVM), Random Forest (RF), and Artificial Neural
Network  (ANN),  might  play  a  crucial  role  in  the
identification  of  prominent  methylation  signatures  that
can distinguish OSCC from normal cells by rapid analysis
of  the  high-dimensional  datasets  typically  produced  by
genome-wide DNA methylation studies. Machine Learning
(ML)  is  a  branch  of  Artificial  Intelligence  (AI)  that  is
deeply rooted in applied statistics, building computational
models that use inference and pattern recognition instead
of  explicit  sets  of  rules.  ML  focuses  on  developing
computer systems that learn from data and progressively
improve their predictive performance, and therefore, can
be very efficient in detecting patterns embedded in high-
dimensional datasets that might not be explicitly defined
and  discernible  by  humans  as  such  machine  learning
techniques have become fairly popular among biomedical
researchers to study methylation patterns associated with
various types of cancers [22-24], including OSCC [25-27].

Despite the highest incidence being in Asia, followed
by Europe and North America,  with a disproportionately
high disease burden in Low- and Middle-Income Countries,
South America, particularly Brazil, also has high incidence
rates  of  oral  and  oropharyngeal  cancers,  which  are
unfortunately underreported and largely overlooked by the
global  research  community.  In  this  article,  machine
learning approaches were utilized to predict methylation
patterns  associated  with  OSCC  using  two  separate
Brazilian datasets. Although a few studies have employed
machine  learning  for  decoding  methylation  patterns  in
diseases  like  Tuberculosis  [28]  and  Chagas
Cardiomyopathy  [29],  this  is  the  first  report  of  machine
learning being used on a cancer methylome dataset from
South America.

2. MATERIALS AND METHODS

2.1. Study Design
The  research  question  addressed  in  this  study  was

whether  machine  learning-based  predictive  analysis  is
capable of identifying distinctive patterns of methylations
in OSCC vs. normal tissue specimens. This is an analytical
study carried out using quantitative methods on a set of
Brazilian  OSCC  patients,  who  served  as  the  study
population,  whose  DNA  methylation  profiles  were  made
publicly available through the Gene Expression Omnibus
(GEO) database.
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2.2. Dataset Description

2.2.1. Training Dataset
The  dataset  GSE234379  was  downloaded  from  the

Gene  Expression  Omnibus  (GEO),  a  public  functional
genomics data repository available through the National
Center  for  Biotechnology  Information,  funded  by  the
government of the United States. This dataset consists of
DNA  methylation  data  from  46  matched  OSCC  and
adjacent normal tissue samples collected from patients at
A.C. Camargo Cancer Center, Sao Paulo, Brazil, run on a
genome-wide  platform  (Illumina  Infinium
HumanMethylation450  BeadChip)  [30].

2.2.2. Independent Dataset
The  dataset  GSE178216,  containing  genome-wide

methylation  data  from 7  non-tumor  adjacent  tissues  and
15 tumors  from OSCC patients  at  the  Brazilian  National
Cancer Institute (INCA, Rio de Janeiro, Brazil) in Illumina
Infinium  HumanMethylation450  BeadChip,  was  used  as
the independent validation dataset [31].

2.3. DNA Methylation Analysis
DNA  methylation  analysis  was  performed  using  the  R

Bioconductor package ‘minfi’ (version 1.54.1) [32], wherein
Beta values (proportion of methylation at a specific CpG site)
and M-values (log-ratio of methylation) for each probe across
samples  were  determined  from  the  raw  IDAT  files  in  the
dataset, after pre-processing using Noob (normal-exponential
out-of-band), a background correction method with dye-bias
normalization. Beta values and M-values are two commonly
used  measures  to  represent  methylation  levels,  with  the
caveat  that  Beta  values  are  more  suitable  for  visualization
and  clustering,  while  M-values  are  better  for  statistical
modeling  and  differential  methylation  analysis.  This  is
because M-values have better statistical properties, such as
more  homoscedasticity  (homogeneity  of  variance/variance
does not depend on the mean), which also aligns better with
assumptions  in  most  machine  learning  algorithms.  Studies
have  also  shown  that  M-values  often  lead  to  better  model
accuracy  and  feature  selection  performance,  and  machine
learning  algorithms  typically  benefit  from  the  unbounded,
more Gaussian-like distribution of M-values. Additionally, the
log-ratio  nature  of  M-values  helps  highlight  subtle  but
consistent  changes,  making  them  more  useful  for  pattern
recognition in classification tasks. Hence, a final set of 67 M-
values, which were retained after filtering out the rows with
missing  values  or  no  variation,  was  chosen  as  the  input
dataset for the machine learning algorithms described in the
next section.

Packages  like  ‘limma’  (v.  3.64.1)  [33],
‘IlluminaHumanMethylation450kanno.ilmn12.hg19’ (v. 3.21),
‘DMRcate’  (v.  3.4.0)  [34],  and ‘ChIPseeker’  (v.  1.44.0)  [35]
were used for Differential  Methylation Analysis,  annotation
and  identification  of  Differentially  Methylated  Regions
(DMRs),  and  subsequent  DMR  analysis,  comparison,  and
visualization,  respectively.

2.4. Machine Learning
The  following  machine  learning  algorithms  were

implemented  using  the  caret  (version  6.0-94)  package  in  R
[36]: (a) Naïve Bayes (NB), (b) Support Vector Machines with
Linear Kernel (SVM-linear), (c) Support Vector Machines with
Radial  Basis  Function  Kernel  (SVM-radial),  (d)  Bagged
Classification  and  Regression  Trees  (treebag),  (e)  gradient
boosting model using decision trees via XGBoost (xgbTree), (f)
Random  Forest  (RF),  and  (g)  Multi-Layer  Perceptron,  with
multiple  layers  (MLP-ml).  Naïve  Bayes  is  a  probabilistic
classifier based on Bayes’ theorem with the naive assumption
that  all  features  are  independent  and  follow  a  Gaussian
distribution.  Support  Vector  Machines  (SVMs)  are  powerful
supervised  learning  algorithms  that  try  to  find  the  optimal
hyperplane  that  best  separates  data  points  from  different
classes  by  maximizing  the  margin  between  them.  Bagging
stands for Bootstrap Aggregating, and is an ensemble method
that creates multiple bootstrap samples (random samples with
replacement) from the training dataset. The 'treebag' method
in caret refers to a bagging ensemble of decision trees, often
known as Bagged CART (Classification and Regression Trees).
The xgbTree method in  the caret  package trains  a  gradient
boosting model using decision trees as base learners, which is
implemented via the XGBoost library. This library sequentially
builds trees where each new tree attempts to correct errors
made by the previous ones. Random Forest is an ensemble of
decision  trees  built  using  Bagging  (Bootstrap  Aggregation)
and Random Feature Selection, where a large number of trees
are built  and their  predictions are aggregated to produce a
more  accurate  and  robust  model.  A  Multi-Layer  Perceptron
(MLP) is a type of feed-forward artificial neural network, and
the  'Multi-Layer  Perceptron  with  Multiple  Layers'  method
supports multiple hidden layers, using the RSNNS (Stuttgart
Neural Network Simulator) backend.

In each of these methods, 80% of the dataset was used
as  training  data  for  5-fold  cross-validation,  while  the
remaining  20%  was  used  as  the  blind/test  dataset  for
model evaluation. During 5-fold cross-validation and model
evaluation,  several  threshold-dependent  and  threshold-
independent  performance  metrics  were  used  [37].  The
‘pROC’ (version 1.18.5) package [38] was used for plotting
the Receiver Operating Characteristic (ROC) curves.

4. RESULTS
The  dataset  GSE234379,  comprising  genome-wide

DNA methylation data from 46 matched oral cavity cancer
and adjacent normal tissue samples generated using the
Illumina Infinium HumanMethylation450 BeadChip (450k),
was  downloaded  from  the  Gene  Expression  Omnibus
(GEO) database, and analyzed using various R packages.
Finally,  a  carefully  filtered  set  of  67  M-values
(representing  67  CpG  sites)  was  used  as  input  to  train
machine  learning  models  using  NB,  SVM-linear,  SVM-
radial, treebag, xgbTree, RF, and MLP-ml algorithms (Fig.
1), as described in the Materials and Methods section. As
shown in Table 1a  & b,  the MLP-ml model  achieved the
best accuracy score of 92% on the training set, and 100%
on the blind dataset.
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Fig. (1). ROC Curves for different ML models with True Positive Rate or Sensitivity as the y-axis and False Positive Rate as the x-axis,
respectively.

Table 1A. Summary of performance metrics for different machine learning methods on the training dataset.

logLoss AUC F1 Sensitivity Specificity Precision Recall Accuracy

NB 2.42 0.89 0.85 0.86 0.84 0.84 0.86 0.85
svmL 0.40 0.89 0.84 0.84 0.84 0.84 0.84 0.84
svmR 0.41 0.90 0.88 0.89 0.86 0.87 0.89 0.88

treebag 0.28 0.95 0.90 0.95 0.84 0.85 0.95 0.89
xgbTree 0.30 0.97 0.91 0.95 0.86 0.88 0.95 0.91

RF 0.29 0.97 0.91 0.95 0.86 0.88 0.95 0.91
mlpML 0.30 0.94 0.92 0.95 0.89 0.90 0.95 0.92

Table 1B. Summary of performance metrics for different machine learning methods on the blind dataset.

logLoss AUC F1 Sensitivity Specificity Precision Recall Accuracy

NB 2.81 0.95 0.78 0.78 0.78 0.78 0.78 0.78
svmL 0.12 1.00 0.95 1.00 0.89 0.90 1.00 0.94
svmR 0.28 0.95 0.82 0.78 0.89 0.88 0.78 0.83

treebag 0.31 0.96 0.82 1.00 0.56 0.69 1.00 0.78
xgbTree 0.33 0.98 0.86 1.00 0.67 0.75 1.00 0.83

RF 0.25 0.98 0.90 1.00 0.78 0.82 1.00 0.89
mlpML 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2. Summary of performance metrics for mlpML using different numbers of features.

logLoss AUC F1 Sensitivity Specificity Precision Recall Accuracy

topmost_feature 0.27 0.95 0.90 1.00 0.78 0.82 1.00 0.89
top3_features 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00
top5_features 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
top10_features 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
top15_features 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
top20_features 0.08 1.00 0.94 0.89 1.00 1.00 0.89 0.94

Table 3. Summary of performance metrics for the minimalistic MLP-ml model using only the top 10 CpG sites
as features on the independent validation dataset.

logLoss AUC F1 Sensitivity Specificity Precision Recall Accuracy

GSE178216 0.11 1.00 0.93 1.00 0.93 0.88 1.00 0.95

Fig. (2). Heatmaps of Beta values of the top 10 CpG sites detected via machine learning in (A) GSE234379, (B) GSE178216.

To further analyze the MLP-ml model,  the number of
features (CpG sites) used for prediction was sequentially
reduced  to  determine  the  least  number  of  features
sufficient  to  develop  a  minimalistic  model.  As  shown  in
Table 2, the best-performing minimalistic model used only
the  top  10  features  to  give  an  accuracy  score  of  100%.
Table  S1  lists  the  details  of  these  top  10  CpG  sites,
including  the  summary  test  statistic  for  the  DMR(from
limma), mean difference in M-values across the DMR, p-
value  for  the  DMR  before  any  correction  for  multiple
testing,  and  FDR-adjusted  p-value  using  the  Benjamini-
Hochberg  method,  along  with  the  genomic  co-ordinates
and overlapping genes (if any).

The minimalistic MLP-ml model using only the top 10
CpG  sites  as  features  was  also  used  to  predict  OSCC
samples in an independent validation dataset GSE178216
consisting  of  15  OSCC  and  7  normal  adjacent  tissue
samples,  achieving  an  accuracy  of  0.9545  [95%  CI:
(0.7716, 0.9988), P-Value 0.002469] and an AUC of 100%,
as  shown  in  Table  3.  Fig.  (2)  shows  heatmaps  of  Beta
values of these top 10 CpG sites in the 2 datasets used in
this study.

5. DISCUSSION
The  incidence  of  oral  cancer  and  corresponding

mortality rates in South America is notably high [39], with
Brazil reporting the highest rates among males [40]. The
rising incidence rates, driven by factors such as tobacco
and alcohol consumption, pose significant challenges for
public health policy, necessitating targeted interventions
to  address  the  underlying  risk  factors  and  improve
healthcare access. In the current study, 2 whole-genome
methylation datasets originating from Brazilian hospitals
were  analyzed  using  machine  learning  algorithms  to
decipher  specific  methylation  patterns  associated  with
OSCC.  The  M-value  (log-ratio  of  methylation  for  each
probe)  matrix  of  485512  probes  across  92  samples  (46
OSCC  tumors  and  46  matched  normal  samples)  was
screened  to  remove  rows  with  missing  values  or  no
variation, yielding a curated set of 67 CpG sites. This is a
crucial  pre-processing  step  because  rows  with  NAs
(missing  values)  can  compromise  statistical  integrity  or
disrupt functions, while imputation of methylation values
is challenging and can introduce bias, especially for high-
dimensional, sparse data like methylation arrays. Removal



6   The Open Bioinformatics Journal, 2025, Vol. 18 Debasree Sarkar

of rows with zero variance, on the other hand, is intuitive
because  methylation  sites  with  the  same  value  in  all
samples  cannot  distinguish  between  the  sample  groups,
thereby  adding  noise  or  redundancy,  increasing  model
complexity  without  any  benefit.  No-variation  sites  are
biologically uninformative and computationally inefficient,
they  inflate  dimensionality  without  contributing  to
variance, possibly distorting results, and hence should be
excluded.

Machine  learning  models  from  several  methods,
including NB, SVM-linear, SVM-radial, treebag, xgbTree,
RF, and MLP-ml algorithms, were trained using the larger
dataset  (GSE234379),  which  is  a  balanced dataset  of  46
OSCC  and  46  normal  samples.  The  use  of  a  balanced
training set in machine learning is crucial for preventing
the  model  from  overfitting,  and  allows  better
generalization,  more  reliable  performance  metrics,  and
more  informative  feature  importance  rankings.  The
generalization  ability  of  the  different  machine  learning
models  was  then  checked  using  the  second  Brazilian
dataset  (GSE178216),  which  was  generated  using  the
same Illumina Infinium HumanMethylation450 BeadChip,
as  an  independent  dataset.  The  MLP-ml  model  achieved
the best prediction accuracy on both the training examples
and  on  the  independent  dataset,  even  with  a  reduced
feature set of only the top 10 CpG sites. Interestingly, the
first  two  CpG  sites  in  the  list  correspond  to  the  genes
CCDC17  and  SELI/SELENOI,  which  have  already  been
implicated  in  various  cancers  [41,  42],  including
Squamous  Cell  Carcinoma  (SCC)  [43].

MLP  models  have  been  previously  used  to  predict
driver  genes  from  multi-omics  pan-cancer  data,  which
included DNA methylation profiles [44], as well as risk of
diabetes  and  cancer  from  DNA  methylation  arrays  [45].
However,  a  major  limitation  of  this  study  is  the  lack  of
experimental  validation  for  the  predictions  made  by  the
computational  methods.  In  addition,  this  study  focuses
solely  on  DNA  methylation;  however,  a  more
comprehensive  model  should  also  incorporate  other
epigenetic  signals  and  correlate  them  with  gene
expression datasets to provide a holistic  overview of  the
underlying  mechanistic  aspects  of  OSCC  tumorigenesis
and  disease  progression.

CONCLUSION

Overall,  this  study  provided  clues  into  salient
methylation signatures unique to OSCC in South American
patients, or more specifically, Brazilian patients, using two
publicly available whole-genome methylation datasets and
machine learning prediction models. The best-performing
minimalistic MLP model used only the top 10 CpG sites to
give an accuracy score of 100% on both the blind testing
set and the second independent validation dataset. Similar
studies  are  needed  on  methylation  datasets  from  other
South  American  countries  to  further  validate  our  model
and the methylation pattern associated with OSCC in our
study.
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