The Open Bioinformatics Journal ISSN: 1875-0362
DOI: 10.2174/0118750362391710250929194610, 2025, 18, e18750362391710 1

RESEARCH ARTICLE OPEN ACCESS

FOR

MPFAN: A Novel Multiscale Network for Brain f)ﬁ} A

Tumor MRI Classification % NV
o>

Shahnawaz Ahmad', Mohd. Aquib Ansari', Arvind Mewada', Prabhishek Singh', Manoj
Diwakar*’, Salman Akhtar* and Basu Dev Shivahare’

School of Computer Science Engineering & Technology, Bennett University, Greater Noida, India
’CSE Department, Graphic Era deemed to be University, Dehradun, Uttarakhand, India

*Graphic Era Hill University, Dehradun, Uttarakhand, India

‘Department of Bioengineering Integral University, Lucknow

°School of Computer Science and Engineering, Galgotias University, Greater Noida, India

Abstract:

Introduction: Accurate classification of brain tumours using MRI scans is vital for early diagnosis and treatment.
However, conventional deep learning models often require complete MRI sequences, which can prolong scan times
and lead to patient discomfort or motion-related image degradation. Thus, enhancing diagnostic accuracy under
faster scanning conditions is a critical research need. Therefore, this research aims to show how our proposed
mechanism, namely Multiscale Parallel Feature Aggregation Network (MPFAN), accurately improves the diagnosis of
classifying brain tumours while maintaining Magnetic Resonance Imaging (MRI) quality in fast MRI scanning.

Methods: This article proposed an MPFAN architecture that utilizes parallel branches to extract image features from
different scales, using independent pathways with varied filters and movement steps. Feature combination blocks,
feedback prevention mechanisms, and strict training constraints enhance system reliability.

Results: MPFAN achieved an accuracy of 97.4%, outperforming many existing brain tumour classification models.
Performance improved steadily over training epochs, and optimizer comparisons showed Adam and Ada-Delta yielded
the best results. Ablation studies confirmed that multiscale feature extraction, dropout regularization, and feature
fusion significantly contribute to classification accuracy.

Discussion: The MPFAN model demonstrates superior performance due to its ability to effectively extract and
integrate multiscale features. Its dual-branch architecture enables deeper contextual understanding, and its high
accuracy validates its clinical potential. However, the model’s reliance on a single dataset and potential overfitting in
later training epochs indicate the need for broader validation and optimization in real-world clinical environments.

Conclusion: The proposed MPFAN architecture enhances brain tumour classification by improving image processing
efficiency and decision-making speed, making it a reliable and effective diagnostic tool.

Keywords: Brain tumour classification, Multiscale feature aggregation, Deep neural network, Medical image
processing, Computer-aided diagnosis.

License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

© 2025 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
CrossMark

Received: March 10, 2025
Revised: June 26, 2025
Accepted: July 09, 2025
Published: October 07, 2025

Cite as: Ahmad S, Ansari M, Mewada A, Singh P, Diwakar M, Akhtar S, Shivahare B. MPFAN: A Novel Multiscale Network @
for Brain Tumor MRI Classification. Open Bioinform J, 2025; 18: €18750362391710.

http://dx.doi.org/10.2174/0118750362391710250929194610

* Address correspondence to this author at the Department of Bioengineering Integral University, Lucknow, India; E-mail:
salmanakhtar18@gmail.com

Send Orders for Reprints to
reprints@benthamscience.net


https://openbioinformaticsjournal.com/
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:salmanakhtar18@gmail.com
http://dx.doi.org/10.2174/0118750362391710250929194610
http://crossmark.crossref.org/dialog/?doi=10.2174/0118750362391710250929194610&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://openbioinformaticsjournal.com/

2 The Open Bioinformatics Journal, 2025, Vol. 18

1. INTRODUCTION

Brain tumours are extremely dangerous and fatal
cancers, which cause loss of life. Ageing or damaged brain
cells that fail to regenerate properly may create extra
tissue, leading to tumour formation [1]. Brain tumours
exist in two forms: cancerous growths that spread and
non-cancerous growths that do not. Fast detection and
treatment of malignant brain tumours have become
essential since they spread rapidly into nearby brain
tissues to increase the chances of survival [2].

Doctors often choose MRI scans to discover brain
tumours because these devices create precise brain
images through magnets instead of radiation exposure.
Brain tumours are generally categorized into three types
based on their location: meningiomas, pituitary tumours,
and gliomas [3]. There are two main brain tumour image
classification strategies using MRI scans: traditional
manual feature analysis and deep learning techniques.
Doctors must select image features by hand before feeding
them into standard classifiers, including Support Vector
Machine (SVM) and K-Nearest Neighbour (KNN). These
methods work well but take a long time to process data
and require a lot of effort [4-7]. Convolutional Neural
Networks (CNNs) enable deep learning systems to
automatically identify and organize features while
addressing challenges related to improper data and slow
processing.

Standard deep learning approaches need all the
information within the MRI images to perform
classification. Extended MRI procedures make patients
uncomfortable and result in damaged MRI images when
patients move. Deep learning methods for fast MRI
scanning must improve their ability to preserve image
quality to achieve better brain tumour classification
results [8, 9].

Our proposed MPFAN architecture combines CNN
features from different scales through parallel networks to
boost brain tumour classification results. MPFAN uses
parallel branches to extract detailed image features both
near and far. The system uses two independent pathways
to examine input images using different filters and
movement steps to produce different feature sets.
Integrating separate feature combination blocks, feedback
prevention tools, and strict training limits helps the system
perform more reliably. The proposed method combines
efficient brain tumour classification with powerful
diagnostic results through better processing and quicker
decision-making. The main contribution of the paper is as
follows:

e We present a state-of-the-art method to classify brain
tumours from MRI images.

e We present a Multiscale Parallel Feature Aggregation
Network (MPFAN) to detect tumours efficiently from
medical images.

e We experimentally explore this network for different
parameters.
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1.1. Related Work

The current literature on glioma grading and brain
tumour classification predominantly relies on CNN-based
methods due to their ability to learn local features.
However, these methods struggle with modelling long-
range dependencies and global context, which may limit
classification accuracy. The machine learning-based
approach discussed by Wang et al. [10] demonstrates
satisfactory accuracy but provides limited insights into
general performance across various tumour classes.

Attention mechanisms have increased the emphasis on
features, yet convolutional operations still dominate,
making capturing objects such as blurred edges or
intensity variations challenging. On the other hand,
previous approaches achieve high accuracy; further
enhancements are needed to develop more general and
multiscale classifiers. Rasheed et al. [11] employed an
efficient CNN method to categorize three different types
of brain tumors. Abd El-Wahab et al. [12] proposed a deep
learning model called BTC-FCNN to enhance classification
accuracy while reducing the computational overhead of
MRI-based classifiers.

Ozkaraca et al. [13] utilized Dense CNN to improve
brain tumour classification in MRI imaging. Similarly,
Muezzinoglu and Others [14] introduced PatchResNet, a
framework leveraging multi-sized patch-based feature
fusion to achieve high classification accuracy. Their
approach incorporates KNN classification and iterative
hard voting, which are crucial for boosting accuracy.
Mijwil et al. [15] employed MobileNetV1 to classify brain
tumors in MRI images, demonstrating an accurate and
efficient model for medical imaging systems. Saurav et al.
[16] introduced a simple attention-guided convolutional
neural network (AG-CNN) architecture that utilizes
channel attention and global average pooling (GAP) as its
feature extraction mechanism.

Sekhar et al. [4] adopted the GoogLeNet model and
employed SVM and KNN classifiers to differentiate
gliomas, meningiomas, and pituitary tumors. Athisayamani
et al. [17] utilized ResNetl52 to enhance feature
extraction and reduce dimensionality, improving
classification performance. Shahin et al. [18] designed
MBTFCN, which classifies tumors across multiple
categories using three key techniques, including feature
extraction with residual connections and attention
mechanisms.

In their research, Aloraini et al. [19] integrated
Transformer and CNN elements into a single model, while
Zulfiqgar et al. [20] leveraged EfficientNets for brain tumor
image classification. Mehnatkesh et al. [21] applied an
improved ant colony algorithm to optimize MRI tumor
classification using ResNet. Singh and Agarwal [22]
developed a CNN-based approach specifically designed for
T1WCE MRI images.

Isunuri and Kakarla [23] utilized a neural network
based on separable convolution to maximize
computational speed in tumor classification. Raza et al.
[24] extended GoogLeNet into a 15-layer deep network to
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enhance expressive capabilities. Aamir et al. [25]
employed EfficientNet-BO for feature extraction after
grouping and segmenting images, enhancing image
contrast using nonlinear techniques.

A new approach, referred to as full-stack learning
(FSL), was proposed by Wang et al. [26], where sampling,
reconstruction, and segmentation are co-performed due to
task dependencies and improve MRI workflow. Ling et al.
[27] proposed a new multitask attention network named
MTANet for better segmentation and classification,
together with an attention mechanism. Wang et al. [28]
developed a multi-stage hybrid attention network (MHAN)
model to conduct MRI image super-resolution and
reconstruction, besides having specialized modules
regarding enhanced spatial feature extraction. Sui et al.
[29] applied ConvNext blocks in a multi-task learning
system for liver MRI analysis and found refined details for
higher accuracy. Subsequently, Delannoy et al. [30]
proposed SegSRGAN, which employs the GANs to improve
the resolution in neonatal brain MRI and the segmentation
accuracy. Corona et al. [31] integrated total variation
reconstruction and Chan-Vesed segmentation using
nonconvex Bregman iteration to achieve enhanced output
from both systems. Cipolla et al. [32] also presented a
structure that uses geometric and semantic loss to allow
scene analysis with maximum efficiency in multi-task
learning. Sun et al. [33] developed SegNetMRI as a deep
learning technology that reconstructs and segments MRI
images using compressed sensing techniques. Sui et al.
[34] developed RecSeg to incorporate two TU-Net
structures, making MRI reconstruction faster and lesion
segmentation more accurate. Pramanik and Jacob [35]
recently employed Deep-SLR to improve the parallel MRI
data reconstruction and segmentation function.

Recent studies also highlight the wuse of
Electroencephalogram (EEG)-based machine learning
models and their application to different neurological
disorders [36] with an unmatched accuracy rate. Tripathi
et al. [37] developed a Weka-based ensemble framework

that integrated EEG, Electrocardiogram (ECG), and
Electromyography (EMG) signals working with the
PhysioNet sleep-bruxism dataset. They reported up to 99%
accuracy in detecting sleep bruxism. M.B. Bin Heyat et al.
[38], which used a Decision Tree classifier with C4-P4 and
C4-A1 EEG channels for sleep bruxism detection [39-41].
Wang et al. [42] proved that single-channel EEG (C4-P4)
and some fine decision tree classifiers could achieve
97.84% accuracy using a small REM-sleep dataset for
bruxism detection. In the Attention Deficit Hyperactivity
Disorder (ADHD) diagnosis, Saini et al. [43] suggested a
model to predict ADHD using EEG signals and machine
learning methods. This method tested different types of
classifiers to improve the accuracy and reliability of the
diagnosis of ADHD. The proposed method showed how
EEG-based automated systems can help in early
identification and can be useful for clinical use. Regarding
epilepsy detection, Alalaya et al. [44] suggested a method
to detect epilepsy using EEG signals. This method used
DWT to extract features and then used PCA or t-SNE to
reduce the complexity of the data. Several classifiers, such
as RF, XGBoost, and MLP, were tested to see which one
works best. This method achieved an accuracy of up to
98.98%, which is better than the accuracy reported in
previous research.

Table 1 presents a comparative analysis of various
deep learning models (CNNs, CNNs with Attention, and
Transformers) [45-50] for classifying Computed
Tomography (CT) scans as belonging to a brain tumour. It
proved that CNNs can be more accurate when used, but
they have a variety of limitations, such as capturing the
global context or the long-range dependencies. The
incorporation of attention-based models enhances feature
focus but, at the same time, presents problems such as
blurred boundaries and marginal classification errors.
Thus, although transformer models seem to be accurate in
many tasks, limited data exists comparing them to other
techniques for glioma grading or multi-class
categorization.

Table 1. A Review of Deep Learning Approaches for Brain Tumour Classification.

Author(s) Methodology
Rasheed et al. [11] CNN

Key Features

Abd El-Wahab et al.|BTC-FCNN
[12]

Ozkaraca et al. [13]

Fast CNN for MRI

Dense CNN Dense connections

Muezzinoglu et al. PatchResNet + KNN
[14]

Mijwil et al. [15]
Saurav et al. [16]

MobileNetV1
AG-CNN

Lightweight CNN
Attention + GAP

Sekhar et al. [4] GoogLeNet + SVM/KNN

Athisayamani et al./ResNetl152
[17]

Shahin et al. [18] MBTFCN Residual + attention

Three-class classification

Patch-based deep fusion

Hybrid deep + classical ML

Feature extraction + reduction |Strong residual learning

Strengths Remarks

Efficient feature learning Baseline CNN; lacks advanced context
handling

High accuracy, low computation |Prioritizes speed; suited for real-time
systems

Enhanced feature propagation |Strong feature reuse, but risk of
redundancy

Multi-size patch learning Creative patchwise fusion with

classical ML

Suitable for edge deployment

Emphasizes spatial attention for

classification

Effective multi-class separation |Combines deep and traditional
techniques

Deep architecture with reduced
overfitting

Modular framework with strong
potential

Efficient, mobile-friendly
Emphasizes relevant features

Modular, scalable design
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(Table 1) contd.....
Author(s) Methodology Key Features Strengths Remarks
Aloraini et al. [19] Transformer + CNN Hybrid deep learning Captures long-range Innovative mix of CNN and
dependencies Transformer

Zulfiqar et al. [20] EfficientNet Efficient CNN model High accuracy, low parameters |Balanced accuracy and efficiency
Mehnatkesh et al. [21]|ResNet + Ant Colony|Feature optimization Intelligent hyperparameter Uses bio-inspired tuning; novel combo
Optimization tuning
Singh & Agarwal [22] |CNN for TIWCE Tailored to specific MRI type |Better domain-specific accuracy |Specialized approach for TITWCE
modality
Isunuri & Kakarla [23] |Separable Conv Net Faster computation Optimized inference speed Prioritizes speed with separable
convolutions

Raza et al. [24] Deep GoogLeNet (15-layer) |Extended depth

Richer feature extraction Deep stack model for richer features

Aamir et al. [25] EfficientNet-BO + Image|Contrast enhancement +|High classification precision Strong results with preprocessing
Segmentation segmentation boost
Wang et al. [26] Full-stack Al Joint sampling, segmentation |Streamlined MRI workflow Holistic pipeline from input to
diagnosis
Ling et al. [27] MTANet Multi-task with attention Strong joint segmentation & Multi-task enhances robustness
classification
Wang et al. [28] MHAN Multi-stage hybrid attention Effective feature refinement Layered attention improves accuracy

Sui et al. [29] ConvNext + multi-task MRI liver analysis

High accuracy in multi-task
setting

Great potential, but for liver MRI

Delannoy et al. [30] |SegSRGAN GAN for segmentation + SR High-resolution segmentation |Combines SR with accurate
segmentation
Corona et al. [31] Nonconvex Bregman Joint reconstruction +|Strong theoretical foundation = [Mathematical rigor, practical
Iteration segmentation challenge
Cipolla et al. [32] Multi-task + uncertainty|Loss weighting via uncertainty |Efficient scene understanding |Smart uncertainty-based multitasking
loss
Sun et al. [33] SegNetMRI Unified DL for MRI Effective joint learning Specific to compressed sensing
Sui et al. [34] RecSeg (dual U-Net) Fast MRI + lesion|Robust to noise, high accuracy |Redundant dual net improves
segmentation segmentation

Pramanik & Jacob [35]|Deep-SLR

Image domain deep learning

Better parallel MRI handling Deep learning for fast, quality MRI

Tripathi et al. [37]

fusion dataset

Ensemble learning using/Power spectral density (EEG),|strong multi-modal approach
Weka with EEG, ECG, EMG|multi-signal fusion, PhysioNet

Combining EEG with ECG/EMG
greatly enhances bruxism detection
accuracy

Wang et al. [42] Fine decision tree classifier| Time-frequency,
on single-channel EEG features, bipolar

(e.g., C4-P4)

nonlinear|simplicity of single-channel use |Single EEG channel (C4-P4) sufficient
channels

for accurate bruxism classification

Saini et al. [43]

EEG dataset for ADHD|symptom analysis
prediction

Applied Naive Bayes, K-NN,|Dataset of 157 children (77/K-NN achieved highest accuracy |Useful for ADHD diagnosis in children
and Logistic Regression on/ADHD, 80 healthy), behavioral|(89%), better than Naive Bayes

and Logistic Regression

Alalayah et al. [44]
PCA and t-SNE for|PCA + t-SNE,
dimensionality reduction, |clustering
classifiers: RF, XGBoost, K-
NN, DT, MLP

DWT for feature extraction, EEG signals, DWT features,|Achieved 98.98% accuracy using|Effective for early epilepsy detection
K-means|MLP with PCA + K-means, high

precision and F1-score

2. PROPOSED METHODOLOGY

Fig. (1) shows the method to classify brain tumours
using Magnetic Resonance Imaging scans. Before analysis
begins, researchers resize images and eliminate noise by
applying a Wiener filter followed by a smoothing process.
The Wiener filter enhances image quality by responding to
local variations and fighting noise to keep vital edge and
texture information that doctors need to diagnose
correctly. We normalize and prepare input data before
deep learning models perform their processing tasks.

The pre-processed images enter the MPFAN model to
dig out functional image content. MPFAN uses multiple
processing pathways to examine different kinds of image
features at various levels of detail, while attention
techniques highlight the most important image areas. The
model classifies the images into four categories: The
system reacts to MR image input by labelling results into
four tumour groups, which include “No Tumour,”
“Glioma,” “Pituitary,” and “Meningioma.” The system

combines improved processing steps with MPFAN'’s
focused analysis to help doctors make accurate tumour-
type detections.

2.1. Image Preprocessing

Using Wiener filtering [51] enhances medical images
accurately, especially when performing vital tasks in
medical imaging research. This method lowers image
noise to boost overall quality without harming distinct
structural and textural parts. Wiener filtering helps
prepare MRI images for brain tumour classification before
deep learning models can analyze them. The Wiener filter
adjusts to image areas to find noise power and then
applies ideal smoothing to each region. Compared to
standard filters, the Wiener filter keeps vital medical
image information intact. It does so by considering both
the signal-to-noise ratio and the local variance within the
image (as shown in Eq. 1), reducing noise selectively
without compromising sharpness.
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Fig. (1). Workflow of the proposed MPFAN-based brain tumour classification
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Where G(u,v) is the restored image, H(u,v) represents
degradation functions, and F(u,v) is a degraded image in
the frequency domain. Here, the power spectral density is
represented by S,,,) and S;,,, for noise and the original
image, respectively.

Processing MRI images initially helps remove
acquisition noise and environmental interference that may
interfere with tumour observation. Wiener filtering both
boosts visual contrast and corrects distorted input data to
make the results clearer and of better quality. Our deep
learning model achieves better detection precision by
operating on images that retain natural structure and
shape details. The processing system can accurately
recognize brain tumours through MRI scans thanks to the
Wiener filtering application.

2.2, Proposed Algorithm: Multiscale Parallel Feature
Aggregation Network (MPFAN)

A multi-branch convolutional neural network (CNN)
architecture incorporating a multiscale feature extraction
architecture is proposed to learn multiscale features
effectively and achieve robust performance, as shown in
Fig. (2). It has an input layer of image shape 120 x 120 x
3. The input is processed independently in two parallel
branches using convolutional layers (convl and conv2)
with different kernel sizes and strides. By this

configuration, the network can extract different features
of the input images. Equations (Eq. 2 and Eq. 3) represent
the convolution and max pooling operations that are
applied to the images.

X'=f(W=+X+h) @)
= nm.;i,-,;enx{if:] @)

Where W, X, and b are kernel, input, and bias,
respectively, followed by activation function f(.).

Each branch consists of a series of convolutional
blocks, which are then finished with maxpooling layers to
decrease spatial measurements while keeping significant
hierarchical information. One of the key features of the
architecture is the use of concatenation layers, which
combine feature maps of different branches. The same is
shown in Eq. 4, which allows the network to retain and
integrate information from multiple scales, preserving
global and local spatial patterns.

Faar = Concat(features ...) @

To take advantage of the higher accuracy of Thompson
sampling on stochastic bandit problems, we propose a
multi-branch approach that allows for more complex input
data by combining empirical value estimates with
Thompson sampling. After the feature extraction process,
the network transitions to fully connected layers for high-
dimensional transformation and classification. The first
step is to flatten the feature maps, transforming the 3D
tensors into 1D feature vectors.



The Open Bioinformatics Journal, 2025, Vol. 18

Input
|
[

¥
Convid(il, Ix3)
Suride = (2, 2)
|
ConvId(31, Ind)
Stride = (1, 1)
I
v
Convld(ed, Iad)
Seride = (1, 1)

v
Convy2di6d, 31y
Stride = (2, 2)

*
Maux Pooling
(ELR 1]

. B
Concatenntion

(‘m\-!dl'tv-l. ixl) ‘
Stride = (1. 1) .
v Convidied, I3y
Conv2ditd, Sx1) Siride = (1, 1)
Seride = (1. 1) ‘

L
Conv2diod, 1v5)

¥
Stride = (1, 1) Conmy2di %6, $185)

Stride = (1, 1)

L]
Canv2d{%, 3xd)
Siride =1, 1)

¥ ¥

Concatenation
=}

v
Max Pooling
| (3ady

3
€Clony 29, In¥)
Stride = (1, 1)

|
} '

¥
Convidied, Ixl)
Stride = (2, 2)

hd
Cony2d{64, 3x1)
Stride = (1, 1)

*
Conv2died, 1x3)
Sueride = (1. 1)

*
Max Paoling
(3

v
Conv2d(64, Ix1)
Stride = (1, 1)

. ]
ConyZd(id, Sxl)
Stride = (1, 1)

¥
Conv2di%, 1x5)
Stride = (1, 1)

v
Conv2di%6, 1x1)
Stride = (2, 1. 1)

v
Conv2d{96, 3x3)
Seride = (1. 1)

Max l:unuax
()

Ahmad et al.

Concatemation

I

L] \
Comcatenntion

Max Pouling
3k

|

Flatten

‘

FC1 (1024)

I¥rapowt
-
(LR 4]

i — Dropout
Ty

FO2 (128)

I

Saftmas

Fig. (2). Architecture of the proposed Multiscale Parallel Feature Aggregation Network (MPFAN).

In the first dense layer, we set the number of neurons
to 2048 to learn complex patterns (beyond simple lines
and planes) in the data. These learned features are passed
through a second dense layer with 512 neurons for further
refinement. To prevent the model from overfitting,
dropout layers with well-chosen rates are applied after
each dense layer to ensure that the model generalizes well
to unseen data. Depending on whether the task is binary
classification, the final dense layer consists of a single
neuron with either a linear or sigmoid activation function.
Eq. 5 shows the functionality of a fully connected layer,
and softmax classification is represented by Eq. 6.

FC = f(We. - Faar + D) ©)

e~
ﬁ (6)

With its multi-branch design, layered structure, feature
concatenation, and regularization techniques, the network
is naturally suited for tasks that require high-dimensional
input processing and precise feature extraction and
classification.

P(yi) =
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2.3. Pseudo Code for MPFAN

Our MPFAN model implementation starts by defining
the size of the MRI image inputs. The input layer
processes the images and passes them through two
separate convolutional branches: one with a smaller filter
size. Our design uses one convolutional branch with 3 x 3
filters and another with 5 x 5 filters. These layers shrink
feature maps by taking their maximum values during each
subsampling step. The model merges scale feature maps
from each input branch to build its overall representation.

A layer of 2048 neurons with ReLU activation builds
complex features that reduce the dropout layer with 0.4
probability to prevent overfitting. After processing
through 512 neurons, the layer refines another step-in
feature extraction before traditional dropout protection.
The model’s final layer consists of one neuron with a
sigmoid activation to provide tumour malignancy
likelihood. The model trains best using Adam optimization
and binary cross-entropy loss to achieve proper results.
The same has been presented as an algorithm in Algorithm
1 for the proposed MPFAN model.

Algorithm 1: Multiscale Parallel Feature Aggregation
Network (MPFAN)

1: Input: MRI brain image [ER120%x120%3

2: Output: Tumour classification
y€{Glioma,Meningioma,Pituitary,No Tumour}

3: Load MRI brain tumour image of size 120 x 120 x
3.

4: F,; « ReLU(Conv2Dy; 5,5,-,(1))

5: F,, « ReLU(Conv2Dy, 5,561 (Fa1))
6: F,3 = ReLU(Conv2Dy, 5,31 (Fy,))
7: P, « MaxPool,,;(F,;)

8: P,. « ReLU(Conv2Dg, 3,3-5(F43))
9: Concatenate: F, « Concat(P,, P,.)
10: F; « ReLU(Conv2Dgy 1, 5-1(F}))
11: F, « ReLU(Conv2Dg, 5, -1 (Fc1))
12: F 3 « ReLU(Conv2Dg, ;561 (Fcs))
13: F, < ReLU(Conv2Dyg 5,541 (Fc3))
14: F), « ReLU(Conv2Dg, 5,5.-1(F}))
15: F), « ReLU(Conv2Dyg 5,5 -1 (Fp))
16: Concatenate: F, « Concat(F,,, Fp,)
17: Py, « MaxPool,,,(F,)

18: Fy; « ReLU(Conv2Dyg 3,5,6-1(F5))
19: Concatenate: F, « Concat(Py,, Fg;)
20: F, « ReLU(Conv2Dyg, 1, ,-,(I))

21: F, « ReLU(Conv2Dyg, 5,; ;-1 (F5))
22: Fg3 « ReLU(Conv2Dyg, ;3 ,-1(F5))
23: Ppy; < MaxPool,, (Fys)

24: F;, « ReLU(Conv2Dyg, ;. o=1(Prss )

25: F, « ReLU(Conv2Dg, 5,1 ¢-1(Fg))

26: Fg; « ReLU(Conv2Dyg ;5 -1 (Fr))

27: Fg, < ReLU(Conv2Dyg 5 ¢o3x1(FE3))

28: Fz; « ReLU(Conv2Dyg 5,5 -1 (Fry))

29: Pgp; « MaxPool,, ;(Fgs)

30: Concatenate: F, « Concat(Pgg;, F;)

31: P, « MaxPool,,,(F,)

32: Flatten the pooled feature map: F; < Flatten(P,)

33: Fully connected layer 1: h, « ReLU(W,F; + b)),
then apply Dropout (p = 0.4)

34: Fully connected layer 2: h, « ReLU(W,h, + b,),
then apply Dropout (p = 0.4)

35: Final output: y"« Softmax(W,h,+ b,)

36: Predicted class: y <« Argmax(y")

The algorithm is run on an MRI dataset with 32 images
per batch during 100 training rounds. We use labeled MRI
images to train our model and validate performance by
checking results with the validation data. The MPFAN
model achieves good results while also running efficiently
for brain tumour diagnosis tasks.

2.4. Dataset Description

The Brain Tumour MRI Dataset provides a
comprehensive collection of MRI scans for brain tumour
classification [52] [53]. It includes four tumour categories:
Gliomas (300 images), Meningiomas (306 images),
Pituitary Tumours (300 images), and No Tumours (405
images). This dataset is well-suited for deep learning
applications focused on automatic tumour detection and
classification. Given the challenges of low-quality imaging
and undersampled data, our MPFAN model addresses
these issues by extracting multiscale features and
processing them in parallel. The dataset is used for both
training and performance evaluation of the MPFAN model,
with key aspects including multiscale feature extraction to
capture tumour characteristics at different spatial levels,
parallel processing for improved feature representation,
and classification accuracy, efficiency, and feature
robustness as the primary performance metrics.

3. RESULTS AND DISCUSSION

The comparative analysis of different epochs indicates
a consistent improvement in performance metrics over
time, as shown in Table 2. Validation and training
accuracy increase as the model trains from 20 to 100
epochs. At epoch 100, the validation accuracy hits 0.974
while training accuracy reaches 0.985. As the model trains
over time, its optimization improves, resulting in lower
training (0.053) and validation loss (0.072). The changes in
TR and TF results ensure better model performance, while
TP gains show steady progress in reliability. Our results
show signs of overfitting from validation metrics in later
epoch updates. Our findings show that increasing model
training time produces better results yet requires manual
optimization to maintain prediction reliability.
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Table 2. Performance analysis of the proposed method for different epochs.

Ahmad et al.

Epoch TA TL TP TR TF VA VL VP VR VF
20 0.956 0.092 0.958 0.956 0.951 0.961 0.082 0.962 0.961 0.957
40 0.975 0.069 0.976 0.974 0.971 0.975 0.064 0.975 0.975 0.973
60 0.983 0.055 0.983 0.982 0.98 0.986 0.057 0.987 0.984 0.98
80 0.984 0.055 0.985 0.984 0.983 0.964 0.078 0.966 0.964 0.958
100 0.985 0.053 0.985 0.985 0.983 0.974 0.072 0.977 0.974 0.974
Note: *T=Training, V=Validation, A=Accuracy, L=Loss, P=Precision,
R=Recall, F=F1-Measure.
Table 3. Comparative analysis of proposed approach for different optimizers.
Optimizer TA TL P TR TF VA VL VP VR VF
RMS Prop 0.922 0.129 0.93 0.919 0.918 0.887 0.195 0.894 0.878 0.869
Ada-Delta 0.99 0.042 0.991 0.99 0.989 0.972 0.071 0.977 0.972 0.97
Adam 0.985 0.053 0.985 0.985 0.983 0.974 0.072 0.977 0.974 0.974
SGD 0.987 0.05 0.988 0.987 0.986 0.958 0.113 0.959 0.958 0.953
AdaGrad 0.98 0.058 0.98 0.979 0.975 0.964 0.078 0.966 0.963 0.96
The analysis finds that Ada-Delta is the most effective loss, precision, recall, and Fl-score. Inaccuracy

optimizer because it delivers top accuracy (0.990) and
validation accuracy (0.972) across all performance
measures. In Table 3, Adam’s superior performance shows
that this optimizer produces 0.985 top accuracy and 0.974
validation accuracy. Gradient Descent proves itself
through a Test Accuracy (0.987) that is slightly lower than
its Validation Accuracy (0.958). In performance testing,
AdaGrad generates acceptable results with accuracy
scores of 0.980 for training and 0.964 for validation. RMS
Prop ranks lowest among tested optimizers because it
achieves a TA of 0.922 and a VA of 0.887 compared to
other optimization methods.

As illustrated in Fig. (3), the trade-off curves capturing
the model's learning dynamics on brain tumor
classification showcase the trade-offs between accuracy,
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measurement subsection (a), training accuracy appears to
improve throughout epochs and levels off at around 98.5%
while validation accuracy plateaus slightly below at about
97.4%. This indicates strong model generalization with
negligible overfitting issues. Validation loss presented in
slice (b) demonstrates trends linking cross-entropy losses
for both datasets, whereby training loss decreases to a
value of 0.053 and validation loss settles just under 0.072,
confirming effective convergence without underfitting
issues persisting. These observations support claims
regarding high optimisation efficiency provided by
applying the Adam algorithm, as well as confirming that
the model acquires proper representations during the
training phase, unexposed to excessive overfitting or
underfitting during alternating training and validating
stages.
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Fig. (3). Trade-off curves between training and validation(a) Accuracies, (b) Loss, (c) Precision, (d) Recall, (e) F1-Score

The model's classification performance is further
analyzed and highlighted in training and validation using
precision, recall, and F1-score curves shown in subfigures
(c), (d), and (e). The training precision peaks at 98.5%
while validation precision stabilizes around 97.7%,
reinforcing the claim that false positives are minimized.
Also, recall values, which indicate a model's sensitivity, hit
98.5% for training and 97.4% for validation, which means
almost all true tumor cases are captured. The Fl-score
captures both precision and recall, achieving 98.3% on the
training set while validation yields 97.4%. Having strong
results across the board reflects the classification ability
of the model. The close distance of these metrics across
training and validation illustrates the strength of the
model, alongside its stability over epochs, suggesting
strong overall performance even with multilabel medical

images from diverse domains within healthcare fields
spanning many specialties. All together, these confirm that
the accuracy estimations reached by the proposed model
for real-time detection of brain tumors in support systems
are trustworthy.

3.1. Comparison with Existing State-of-the-Art

This study compares MPFAN against leading brain
tumour classification techniques that exist today, as found
in Fig. (4). The MPFAN system delivers outstanding
performance in every metric, with a precision of 0.977 and
outcomes that closely match each other. MPFAN performs
better than competing systems, which reported 0.963
accuracy and 0.960 F1 measure data. Our study shows
that breaking up tumour features at multiple scales and
then analyzing them together improves detection accuracy
to establish a new classification benchmark.
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Table 4. Comparative evaluation of MPFAN with different architectural ablation variants.

Description

Proposed Method (MPFAN) 97.4
Remove one parallel branch (use only 3x3 conv) 93.1
Use same kernel size in both branches (3x3 for both) 94.5
Remove feature concatenation (keep outputs separate) 91.8
Remove dropout layers 95.2
Reduce dense layer size (1024 — 256 instead of 2048 - 512) 94.7
Replace Adam with SGD optimizer 95.8
Remove max pooling in branches 92.5
Single-scale CNN (no multiscale branches) 90.4

3.2. Ablation Study

We have performed an extensive ablation study to
understand the contribution of each architectural
component of the proposed MPFAN model. Here, we have
tested the performance impact of removing or modifying
important components such as the multi-branch structure,
feature fusion strategy, dropout regularization, optimizer,
and dense layer configuration. Table 4 presents the results
of the comparative analysis of each architectural
component of MPFAN. The baseline MPFAN model
achieved a classification accuracy of 97.4% on the brain
tumor MRI dataset. Removing one of the parallel branches
(3x3 or 5x5 convolution) caused a drop in accuracy to
93.1%, underscoring the importance of extracting
multiscale features. Additionally, using the same kernel
size in both branches, accuracy dropped to 94.5%,
suggesting that capturing rich spatial features requires
multiple receptive fields.

Moreover, eliminating the concatenation of features
also resulted in a notable accuracy drop to 91.8%,

Accuracy (%) | Drop in Accuracy w.r.t. MPFAN

143
129
1 5.6
122
127
116
149
170

underscoring its vital role in maintaining multiscale spatial
quantitative information. The removal of dropout also
reduced accuracy to 95.2%, confirming the regularization
effect of dropout, which is clearly necessary in avoiding
overfitting.

The accuracy is dropped to 2% (i.e., 94.7%) with the
modification changing dense layers from 2048-512 to
1024-256. This shows a need for greater feature
transformation ability in the classification phase.
Changing the optimizer from Adam to SGD caused a slight
drop to 95.8%, suggesting better convergence properties
of Adam for this architecture. Also, removing max pooling
in the branches or using a single-scale CNN (no multi-
branch structure) caused a significant loss in
performance, down to 92.5% and 90.4%, respectively.
These results support the design choices made in the
MPFAN and illustrate the need for multiscale processing
in parallel with hierarchical feature integration to achieve
precise brain tumor classification.
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3.3. Constraints of the Study

Results aside from the strong performance of the
proposed MPFAN model in brain tumor -classification,
MPFAN shows several limitations that may most likely
impact interpretation and generalization. The model is
trained and validated using a single benchmark MRI dataset,
which does not consider the variability present in real-world
clinical scenarios with different imaging devices, patient
demographics, and scanning protocols.

Moreover, the model demonstrated high accuracy
across epochs and optimizers; however, signs of
overfitting at the later stages of training indicate that
there could be a sensitivity to performance related to the
training duration and the hyperparameter settings.
Furthermore, the fixed choices of parameters, like the
optimizer and the architectural designs used, may pose
barriers to reproducibility and scalability without some
form of automated optimization. Although the ablation
study validated that every architecture component is
important, the study did not address the robustness of
MPFAN under noise in the data or incomplete information,
which tend to be more prevalent in clinical settings. Such
shortcomings need to be addressed in subsequent work to
improve the model’s clinical relevance and potential for
widespread use.

4. CONCLUSION AND FUTURE DIRECTIONS

The MPFAN (Multiscale Parallel Feature Aggregation
Network) model is developed to improve brain tumor
detection by parallel feature extraction at multiple scales.
MPFAN can capture fine-grained local and global contextual
patterns in MRI brain scans with its multi-branch
convolutional architecture and hierarchically integrated
feature fusion approach. MPFAN overcomes challenges like
feature redundancy, insufficient multiscale pattern
representation, and poor computation efficiency in traditional
CNN models by concurrently processing image data from
varying receptive fields, effectively integrating them. This
marks a stark difference from our model, which, while still
being resource considerate, enables low-resource demand
environments like clinical settings to leverage the model in
real-time.

As for work to tackle in the future, we intend to optimize
MPFAN by adding an Attention Fusion Network to supersede
conventional concatenation layers. This will allow the
network to selectively concentrate on the most important
feature maps during training and inference processes,
making the model achieve these tasks much faster, reducing
overfitting, and lowering model complexity. Moreover, we
plan to add residual connections and bottleneck structures to
strengthen the gradient flow and improve convergence and
generalization performance. For future research, we want to
modify the architecture of MPFAN for use in multimodal
medical imaging, like combining MRI with PET or CT scans,
while also broadening its use to include the classification of
various neurological and oncological abnormalities.
Moreover, the explainability modules, such as Grad-CAM or
SHAP, may be examined to enhance clinical trust and provide
insight into the network's reasoning. With such
enhancements, the MPFAN can develop into a strong, flexible
architecture for a complete analysis of medical images.
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