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Abstract:
Introduction:  This  study  investigates  integrating  quantum-inspired  learning  models  with  traditional  Hebbian
learning within neural networks, comparing their performance in learning efficiency, generalization, stability, and
robustness. Traditional Hebbian models are biologically plausible but often struggle with stability, scalability, and
adaptability. In contrast, quantum-inspired models leverage quantum mechanics principles like superposition and
entanglement to enhance neural network performance potentially.

Methods:  The  simulations  were  conducted  using  a  neural  network  comprising  1,000  neurons  and  100  patterns
across 10 instances. The key parameters included a fixed decay rate of 0.005, 80% excitatory neurons, and 10% fixed
connectivity.  The  study  varied  learning  rates  (0.01,  0.05,  0.1)  and  thresholds  (0.3,  0.5,  0.7)  to  assess  different
parameter settings. The performance metrics evaluated included accuracy, precision, recall, and F1-Score.

Results: The results showed that quantum-inspired models achieved significantly higher accuracy and precision,
enhancing their reliability in class prediction and reducing false positives. Conversely, Hebbian models excelled in
recall and F1-Score, effectively identifying positive cases and balancing precision and recall. Additionally, quantum-
inspired models demonstrated greater stability, robustness, and consistent performance across varying parameters.

Conclusion: Quantum-inspired models offer notable improvements in learning efficiency, generalization, stability,
and robustness, while Hebbian models perform better in recall and F1-Score. These findings suggest the potential for
hybrid  models  that  combine  the  strengths  of  both  approaches,  aiming  for  more  balanced  and  efficient  learning
systems.  Future  research  should  explore  these  hybrid  models  to  enhance  performance  across  diverse  artificial
intelligence  applications.  Supplementary  materials  include  the  complete  R  code  used,  enabling  replication  and
further investigation of the results.
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1. INTRODUCTION
The  study  of  neural  networks  [1-3]  has  profoundly

advanced  the  field  of  artificial  intelligence,  driven  by  a
fundamental question: how can artificial systems emulate

the processes of learning and memory seen in biological
organisms? Central to this inquiry is the development of
learning  algorithms  that  enable  networks  to  adapt,
generalize,  and  execute  complex  tasks  efficiently  and
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precisely [4, 5]. Hebbian learning has historically been a
cornerstone  among  these  algorithms,  offering  a
biologically plausible framework for modeling associative
memory [6-8]. However, as computational demands have
grown,  the  limitations  of  Hebbian  learning—particularly
its scalability and adaptability—have become increasingly
apparent [9]. These constraints have inspired the search
for innovative approaches, including integrating principles
from quantum mechanics to redefine how neural networks
learn and process information.

This  article  introduces  a  novel  quantum-inspired
learning  framework  [10-12]  that  transcends  the
constraints of traditional methods. The proposed approach
offers  new  pathways  for  encoding,  processing,  and
generalizing  information  by  leveraging  quantum
mechanics  concepts  such  as  superposition  and
entanglement  [13,  14].  Unlike  conventional  learning
models,  which  rely  on  deterministic  updates  [15]  to
synaptic  weights,  this  framework  incorporates
probabilistic mechanisms [16] that enable neural networks
to  explore  multiple  solutions  simultaneously.  This
innovation  enhances  the  efficiency  and  robustness  of
learning,  addressing  many  of  the  challenges  inherent  in
conventional  methods  while  expanding  the  potential  for
future advancements in neural computation.

1.1.  The  Role  of  Hebbian  Learning  in  Neural
Networks

Artificial  neural  networks  are  computational  systems
inspired  by  the  architecture  and  function  of  biological
neural systems [17-20]. They rely on algorithms to adjust
the strength of synaptic connections, or weights, between
artificial neurons. Hebbian learning, introduced in 1949,
has been instrumental in this domain due to its simplicity
and alignment with biological processes [21]. It operates
on  the  rule  that  simultaneous  activation  of  two  neurons
strengthens their connection—a principle encapsulated in
the phrase, “cells that fire together wire together.”

Hebbian  learning  has  been  particularly  effective  in
associative memory systems, where neural networks store
and retrieve patterns based on incomplete or noisy inputs.
For  example,  Hopfield  networks,  a  class  of  associative
memory models,  rely  heavily  on Hebbian-like  updates  to
recall  stored  patterns  [22].  These  models  simulate  how
humans  retrieve  entire  memories  from  partial  cues,
reflecting  the  real-world  utility  of  Hebbian  mechanisms.

Despite its foundational role, Hebbian learning exhibits
critical  shortcomings  when  applied  to  modern,  complex
computational  tasks.  Its  simplicity,  which  makes  it
biologically  plausible,  also  limits  its  adaptability.
Traditional  Hebbian models  are  prone to  overfitting  and
memorizing  specific  patterns  without  effectively
generalizing them to new or distorted inputs. This rigidity
undermines  their  performance  in  dynamic  and  high-
dimensional  environments,  where  adaptability  and
scalability  are  paramount  [23,  24].

The limitations of Hebbian learning extend beyond its
inability  to  generalize.  One  significant  drawback  is  the

absence  of  mechanisms  to  regulate  synaptic  growth
effectively.  Without  such  regulation,  Hebbian  learning
often  leads  to  unstable  weight  dynamics  or  saturation,
where synapses reach their maximum strength and fail to
adapt.  These  phenomena  compromise  the  model's
stability, particularly when data distributions change over
time [25-27].

Additionally,  Hebbian  learning  struggles  to  handle
noisy  or  incomplete  data,  a  frequent  occurrence  in  real-
world  applications.  Its  reliance  on  fixed  update  rules
makes  it  less  responsive  to  variations  in  input  patterns,
reducing  its  robustness  in  dynamic  scenarios.  In  high-
dimensional  datasets,  the  computational  demands  of
Hebbian  learning  increase  exponentially,  making  it  less
feasible for large-scale tasks [28].

These  limitations  have  prompted  the  exploration  of
alternative frameworks that can overcome the rigidity of
Hebbian  learning  while  preserving  its  strengths.  Among
the most promising approaches is incorporating quantum
mechanics  principles  to  enhance  the  flexibility  and
efficiency  of  neural  computation.

1.2.  A  Quantum-Inspired  Framework  for  Neural
Networks

The quantum-inspired learning framework proposed in
this study addresses the limitations of Hebbian learning by
leveraging  core  principles  of  quantum  mechanics  [29].
Traditionally associated with physics, quantum mechanics
provides  a  fundamentally  different  paradigm  for
representing and processing information.  Concepts  such
as  superposition,  entanglement,  and  probabilistic  states
offer unique advantages for efficiently encoding complex
relationships  between  variables  and  exploring  solution
spaces  [30-33].

1.2.1. Superposition in Neural Networks
Superposition,  a  foundational  principle  of  quantum

mechanics,  allows  systems  to  exist  in  multiple  states
simultaneously.  When  applied  to  neural  networks,  this
property  enables  the  representation  of  information
probabilistically,  where  multiple  potential  solutions  are
considered  concurrently.  This  contrasts  with  traditional
deterministic  models,  which  sequentially  explore
individual  solutions.  By  evaluating  many  possibilities  in
parallel, quantum-inspired models accelerate the learning
process and reduce the risk of becoming trapped in local
minima—suboptimal points in the optimization landscape.
For  example,  superposition  in  tasks  such  as  pattern
recognition allows a quantum-inspired neural network to
evaluate  multiple  feature  combinations  simultaneously.
This parallelism enhances the network's ability to identify
patterns in high-dimensional data, improving accuracy and
efficiency [13, 34, 35].

1.2.2. Entanglement and Connectivity
Entanglement,  another  core  quantum  principle,

introduces  deep  correlations  between  system  elements
that  persist  regardless  of  distance  [36,  37].  In  neural
networks,  entanglement-inspired  mechanisms  can
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strengthen the connectivity between neurons, fostering a
more  integrated  and  holistic  learning  process.  By
capturing  complex  dependencies  among  features,
entanglement enhances the network's ability to generalize
from limited training data, making it particularly valuable
in  applications  involving  incomplete  or  noisy  inputs
[38-40].

1.2.3. Probabilistic Learning
The probabilistic nature of quantum-inspired learning

offers  distinct  advantages  over  traditional  deterministic
approaches.  Conventional  models  rely  on  fixed  update
rules  for  adjusting  synaptic  weights,  which  can  lead  to
rigid learning pathways and poor adaptability. In contrast,
quantum-inspired  models  use  probabilistic  updates,
introducing variability that enables broader solution space
exploration [41, 42]. This stochastic approach reduces the
likelihood  of  converging  prematurely  to  suboptimal
solutions,  resulting  in  more  robust  learning  outcomes.

1.3. Objectives of This Study
This research evaluates the comparative performance

of  traditional  Hebbian  learning  models  and  quantum-
inspired  models  within  neural  networks.  The  study
explores  key  dimensions  of  performance,  including:

1.  Learning  Efficiency:  Assessing  how  quickly  and
accurately  each  model  learns  patterns.

2.  Generalization  Capabilities:  Examining  the
adaptability  of  models  to  new  or  distorted  inputs,
reflecting  their  robustness  to  novel  scenarios.

3.  Stability  and  Robustness:  Investigating  the
consistency  of  model  performance  under  varying
parameter settings, such as learning rates and activation
thresholds.

4.  Trade-offs  in  Performance  Metrics:  Exploring  the
relationships  between  precision,  recall,  and  overall
accuracy to identify the strengths and limitations of each
approach.

5.  Through  systematic  simulations  and  quantitative
analysis,  this  study  seeks  to  illuminate  the  unique
contributions  of  quantum-inspired  learning  to  neural
computation.

The  implications  of  this  research  extend  beyond
theoretical  exploration.  The  proposed  quantum-inspired
framework  has  practical  applications  requiring  high
efficiency, scalability, and adaptability. For example, tasks
such as image recognition,  natural  language processing,
and  medical  diagnostics  often  involve  noisy  and  high-
dimensional  data,  where  traditional  methods  struggle  to
perform reliably [43]. The probabilistic and parallel nature
of  quantum-inspired  models  makes  them  particularly
suited  to  these  challenges.

Moreover,  the  insights  gained  from  this  study
contribute  to  the  broader  understanding  of  neural
computation,  highlighting  the  potential  for
interdisciplinary  approaches  that  integrate  quantum
mechanics  principles  into  artificial  intelligence.  By
addressing the limitations of traditional learning models,
this research paves the way for developing more versatile
and efficient neural networks capable of tackling complex
real-world tasks.

2. METHODS

2.1. Study Design
This  study  aims  to  compare  the  performance  of

traditional  Hebbian  learning  models  with  Quantum-
Inspired models in neural network simulations. A balanced
approach to parameter selection was employed, combining
fixed  and  varying  parameters  to  maintain  computational
feasibility  while  providing  meaningful  insights.  The
computational  cost  of  neural  network  simulations
increases  exponentially  with  the  number  of  varying
parameters  [44].  By  fixing  the  number  of  neurons  and
patterns,  we  maintain  a  manageable  computation  load
while varying only the learning rate and threshold, which
reduces  the  number  of  parameter  combinations,  making
the  simulation  feasible  on  standard  computational
resources  (The  simulations  were  conducted  using  R
programming on  a  personal  laptop  with  a  Ryzen  7  AMD
processor and 16 GB of RAM, and took over 14 hours to
complete).

2.2. Model Construction
Constructing  the  Hebbian  and  Quantum-Inspired

learning  models  is  fundamental  to  this  study  (Table  1).

Table 1. Mathematical formulas of hebbian and quantum-inspired learning models.

Model Description Formula

Hebbian Learning Model Weight Initialization wij ∼ N (0,0.1)

Connectivity Mask

Proportion of Excitatory Neurons Excitatory neurons=0.8×N
Quantum-Inspired Model Quantum State Initialization qij∼ N (0,1) + i N (0,1)

Quantum Encoding ΔQ = α⋅(p⋅pH + ϵ

Normalization
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Fig. (1). Hebbian neural network architecture.

For the traditional Hebbian learning model, the initial
step involved weight initialization. The weights matrix was
initialized with small random values drawn from a normal
distribution with a mean of 0 and a standard deviation of
0.1,  ensuring  the  weights  start  from  a  near-zero  value,
simulating  the  initial  state  of  synaptic  connections  in  a
biological  network.  A  connectivity  mask  was  applied  to
reflect  the  sparse  nature  of  biological  neural  networks,
ensuring that only 10% of the potential connections were
active.  Additionally,  the  network  consisted  of  excitatory
and inhibitory neurons, with the proportion of excitatory
neurons fixed at 0.8 [45, 46]. This configuration was based
on  observations  from  biological  neural  networks,  where
most neurons are excitatory (Fig. 1).

For  the  Quantum-Inspired  learning  model,  the
quantum  states  were  initialized  with  small  random
complex  values  drawn  from  a  normal  distribution,
representing the probabilistic nature of quantum systems
[11].  The  model  utilized  quantum encoding  to  represent
input patterns, introducing complex perturbations to the
quantum  states,  thus  mimicking  the  probabilistic
interactions  in  quantum  systems  (Fig.  2).  After  each
encoding  step,  the  quantum  states  were  normalized  to
maintain  stability,  ensuring  that  the  states  remained

within a bounded range to prevent numerical instabilities.
While  the  current  implementation  is  designed  for

classical  computation,  future  research  could  explore
whether  quantum  hardware  acceleration  might  improve
the efficiency of quantum-inspired neural networks. This
would allow direct comparison between quantum-inspired
classical  models  and  actual  quantum  computing
implementations, providing deeper insights into potential
computational advantages.

To  provide  a  concrete  illustration,  consider  a  simple
network of 4 neurons and a single input pattern [1,0,1,0].
Under the Hebbian update rule, each synaptic weight wij  is
incremented  or  decremented  by  η⋅xi⋅yj ,  where  xi  yj

represent  the  activation  states  of  neurons  i  and  j.  For
instance,  if  neurons  1  and  3  are  both  active,  the  weight
w1,3 increases by η.

In  contrast,  for  the Quantum-Inspired encoding step,
the quantum state matrix Q is modified by ÄQ = ij α (p ⋅ p H

+ ϵ)  and then normalized.  Here,  ϵ\epsilonϵ  represents  a
small complex noise term. For our 4-neuron example, the
outer product (p ⋅ p H) yields a 4×4 matrix, each entry of
which  is  then  perturbed  by  ϵ\epsilonϵ  before
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normalization.  This  example  demonstrates  how  the
formulas  in  Table  1  translate  into  actual  updates  of
weights  (for  Hebbian)  or  quantum  states  (for  the
Quantum-Inspired  model).

2.3. Parameter Selection
Several parameters were fixed, wh varied to ensure a

comprehensive  evaluation  of  the  models.  The  number  of
neurons  (N)  was  fixed  at  1000,  balancing  biological
realism  and  computational  feasibility.  A  larger  number
would  better  mimic  biological  neural  networks  [47]  but
significantly  increase  the  computational  load,  whereas  a
smaller  number  might  fail  to  capture  the  complexity  of
real neural networks. Similarly, the number of patterns (P)
was  fixed  at  100,  ensuring  the  network  had  a  sufficient
variety  of  input  patterns  from  which  to  learn  and
generalize  [48].  Increasing  this  number  would
proportionally  increase  computational  demands,  making
100 patterns a practical choice for our simulations.

The number of instances was set to 10, using multiple
instances to ensure statistical robustness and reliability of
the results without imposing an excessive computational
burden  [49].  The  excitatory  ratio  was  fixed  at  0.8,

reflecting  the  common  biological  observation  that  most
neurons in the cortex are excitatory [50]. This parameter
was  kept  constant  to  reduce  the  complexity  of  the
simulation. The decay rate, controlling the rate at which
weights decay over time, was fixed at 0.005. This rate is
crucial for preventing the network from becoming overly
saturated  with  high  weights  [51].  Fixing  this  parameter
allowed  us  to  isolate  the  effects  of  learning  rate  and
threshold. The connectivity was fixed at 0.1, meaning each
neuron  was  connected  to  10%  of  the  other  neurons,
representing  a  sparse  connectivity  pattern  typical  in
biological  neural  networks  and  balancing  realism  and
computational  efficiency.

In  contrast,  the  learning  rates  and  thresholds  were
varied. Three levels of learning rates were examined: low
(0.01), medium (0.05), and high (0.1). The learning rate is
a critical parameter that determines the extent of weight
updates  during  learning.  Testing  multiple  levels  allowed
us to observe the models' sensitivity to learning speed and
robustness  across  different  learning  environments  [49].
Low  learning  rates  represent  a  cautious  approach,
medium rates offer a balanced approach, and high rates
represent  aggressive  learning,  which  may  speed  up
convergence  but  also  risks  instability  and  overshooting.

Fig. (2). Quantum-inspired neural network architecture.
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Similarly,  three levels  of  thresholds were tested:  low
(0.3),  medium  (0.5),  and  high  (0.7).  The  threshold
influences  neurons'  activation,  affecting  the  network's
overall  activity  level.  Low  thresholds  lead  to  easier
activation and a more active network, medium thresholds
provide  a  balanced  activity  level,  and  high  thresholds
result  in  a  more  selective  network  with  fewer  active
neurons.  This  approach  was  necessary  to  balance
biological realism and computational feasibility. Any other
approach  would  have  been  impractical  to  perform  on  a
standard  computer  [51].  Future  work  could  investigate
whether  increasing  the  number  of  neurons  and patterns
further  enhances  generalization,  particularly  in  highly
complex  datasets.  Additionally,  leveraging  cloud-based
high-performance  computing  resources  may  allow
researchers to explore even larger scales without practical
computational constraints.

This  diagram  illustrates  the  architecture  of  the
Hebbian  neural  network  used  in  the  study.  It  includes
input,  excitatory,  inhibitory,  and  output  neurons.  The
connections  between  these  neurons  reflect  the
interactions  described  in  the  Hebbian  learning  model,
where  synaptic  weights  are  updated  based  on  the
simultaneous activation of connected neurons. This model
follows  synaptic  plasticity  principles  and  incorporates
excitatory  and  inhibitory  signals.

This  diagram  represents  the  architecture  of  the
Quantum-Inspired  neural  network.  It  includes  input
neurons,  quantum  states,  and  output  neurons.  The
connections  between  these  components  illustrate  the
interactions  in  the  quantum-inspired  model,  where
quantum  states  and  encoding  are  utilized  to  enhance
learning  and  generalization  capabilities.  This  model
leverages  the  principles  of  quantum mechanics,  such  as
superposition  and  entanglement,  to  process  information
more robustly and efficiently.

2.4. Simulation Strategy
For each simulation instance, the weights matrix was

initialized with small random values drawn from a normal
distribution with a mean of 0 and a standard deviation of
0.1. A connectivity mask was applied to ensure that only
10%  of  the  potential  connections  were  active.  Quantum
states were initialized with small random complex values
drawn  from  a  normal  distribution,  mirroring  the
randomness  in  biological  systems  and  preparing  the
network for subsequent learning processes. The number of
excitatory  and inhibitory  neurons  was determined based
on  the  fixed  excitatory  ratio  of  0.8,  resulting  in  800
excitatory and 200 inhibitory neurons in a network of 1000
neurons.  Sparse  binary  patterns  were  generated  for  the
network  to  learn,  with  each  pattern  consisting  of  1000
elements and a probability of 0.1 for each element to be 1
(active) and 0.9 to be 0 (inactive). This sparsity reflects the
typical activity pattern in biological neural networks.

The traditional Hebbian learning process updates the
weights  based  on  the  input  patterns.  For  each  pair  of
neurons i and j, the weight wij  is updated according to the

rule Δwij = η ⋅xi⋅yj , where η is the learning rate, and xi  and
yj  are the activations of neurons i and j, respectively. This
update  rule  considers  neurons'  excitatory  and  inhibitory
nature,  ensuring  that  excitatory  connections  are
strengthened and inhibitory connections are appropriately
adjusted. After each pattern presentation, the weights are
normalized  to  prevent  excessively  large  values  and  then
decayed to simulate biological  processes where synaptic
strengths  decrease  over  time  without  stimulation.  The
normalization step ensures that the weight matrix remains
bounded, enhancing the stability of the learning process.
The  decay  rate  is  fixed  at  0.005  to  reduce  the  synaptic
strengths, preventing saturation gradually.

The  quantum  encoding  function  in  the  Quantum-
Inspired learning model updates the quantum states based
on  the  input  patterns.  The  encoding  involves  adding  a
small  complex  perturbation  to  the  outer  product  of  the
input pattern ÄQ = α ⋅ (p ⋅ p H + ϵ), where p is the input
pattern, p H is Hermitian transpose, α is a small constant,
and  ϵ  is  a  complex  noise  term  drawn  from  a  normal
distribution.  This  encoding  introduces  quantum
superposition and entanglement effects into the learning
process. After each encoding step, the quantum states are
normalized  to  maintain  stability,  ensuring  that  the
quantum  states  remain  within  a  bounded  range  and
preventing  numerical  instabilities  during  the  simulation.

The Hebbian model recall function iteratively updates
each  neuron's  state  based  on  the  net  input  from  other
neurons and the activation threshold. The state of neuron i
is updated according to (1):

(1)

Where  θ  is  the  activation  threshold.  In  contrast,  the
quantum-inspired  recall  function  computes  the  recalled
pattern by taking the real part of the product of the input
pattern  and  the  quantum  states:  r  =  R  (p  ⋅  Q)  .  The
recalled pattern is then binarized based on a threshold of
0.5, converting the continuous values into binary outputs.

2.5. Performance Evaluation
To test  generalization capabilities,  distorted versions

of the training patterns are used. Distortion is introduced
by  flipping  a  small  percentage  of  the  elements  in  each
pattern.  This  distortion  tests  the  model's  ability  to
generalize  from  the  learned  patterns  to  similar,  but  not
identical, inputs. The accuracy, precision, recall, and F1-
Score performance metrics are calculated for each model
across all parameter settings and instances [52-54]. These
metrics comprehensively assess the models' capabilities to
recall and generalize patterns correctly.

2.6. Statistical Analysis
The  performance  metrics  are  aggregated  across  the

nine  instances  for  each  learning  rate  and  threshold
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combination.  This  aggregation  involves  computing  the
mean  and  standard  deviation  for  accuracy,  precision,
recall, and F1-Score, measuring the models' performance
consistency.  To statistically  compare the performance of
the  Hebbian  and  Quantum  models,  paired  t-tests  are
conducted  for  each  performance  metric  across  all
parameter  settings.  The  t-tests  evaluate  whether  the
differences  in  performance  metrics  between  the  two
models are statistically significant. The null hypothesis for
each  t-test  is  that  there  is  no  difference  in  the
performance  metric  between  the  Hebbian  and  Quantum
models.  A  p-value  less  than  0.05  indicates  a  significant
difference, leading to the rejection of the null hypothesis.

We  balance  biological  realism  and  computational
efficiency  by  fixing  the  number  of  neurons,  patterns,
instances, and excitatory ratio. Varying the learning rates
and thresholds allows us to investigate critical aspects of
network behavior and model performance under different
conditions.  This  approach  ensures  that  our  simulation
provides  meaningful  insights  while  remaining
computationally  feasible.

3. RESULTS

3.1. Overview
This  study  compared  the  performance  of  traditional

Hebbian learning models  with  Quantum-Inspired  models
under  varying  learning  rates  and  thresholds.  The  fixed

parameters included the number of neurons (N = 1000),
patterns (P = 100), instances (10), excitatory ratio (0.8),
decay  rate  (0.005),  and  connectivity  (0.1).  Performance
metrics  such  asaccuracy,  precision,  recall,  and  F1-
Score—were  calculated  for  each  learning  rate  and
threshold  combination  across  multiple  simulation
instances.  The results  were aggregated to  provide mean
and  standard  deviation  values,  offering  insights  into  the
models' performance consistency and variability.

3.2. Performance Metrics
The following tables summarize the mean and standard

deviation  of  performance  metrics  for  each  learning  rate
and  threshold  combination  across  ten  instances  (Tables.
2-10).

3.3. Paired t-tests
The  paired  t-tests  revealed  significant  differences  in

the  performance  metrics  between  the  Hebbian  and
Quantum  models,  highlighting  the  superiority  of  the
Quantum-Inspired  models  in  most  scenarios.  Here  is  a
detailed  explanation  of  the  results  (Tables  2-10).

Learning Rate = 0.01, Threshold = 0.3: The Quantum-
Inspired  model  significantly  outperformed  the  Hebbian
model in terms of accuracy (p-value = 0), recall (p-value =
0), and F1-Score (p-value = 0). However, the difference in
precision  was  not  statistically  significant  (p-value  =
0.2765356).

Table 2. Parameters: LR: 0.01, Thresh: 0.3.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.260 0.009 0.872 0.018 0.000 Significant difference Quantum
Precision 0.100 0.011 0.102 0.054 0.277 No significant difference Quantum

Recall 0.799 0.037 0.037 0.022 0.000 Significant difference Hebbian
F1-Score 0.178 0.017 0.053 0.031 0.000 Significant difference Hebbian

Table 3. Parameters: LR: 0.01, Thresh: 0.5.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.261 0.023 0.874 0.017 0.000 Significant difference Quantum
Precision 0.099 0.011 0.106 0.054 0.000 Significant difference Quantum

Recall 0.798 0.046 0.036 0.021 0.000 Significant difference Hebbian
F1-Score 0.176 0.018 0.052 0.029 0.000 Significant difference Hebbian

Table 4. Parameters: LR: 0.01, Thresh: 0.7.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.318 0.182 0.871 0.017 0.000 Significant difference Quantum
Precision 0.093 0.030 0.103 0.054 0.000 Significant difference Quantum

Recall 0.735 0.229 0.037 0.024 0.000 Significant difference Hebbian
F1-Score 0.165 0.053 0.054 0.031 0.000 Significant difference Hebbian
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Table 5. Parameters: LR: 0.05, Thresh: 0.3.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.261 0.009 0.872 0.017 0.000 Significant difference Quantum
Precision 0.101 0.010 0.104 0.055 0.031 Significant difference Quantum

Recall 0.802 0.038 0.037 0.022 0.000 Significant difference Hebbian
F1-Score 0.179 0.017 0.054 0.030 0.000 Significant difference Hebbian

Table 6. Parameters: LR: 0.05, Thresh: 0.5.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.260 0.009 0.873 0.017 0.000 Significant difference Quantum
Precision 0.100 0.010 0.101 0.054 0.446 No Significant difference Quantum

Recall 0.801 0.039 0.035 0.022 0.000 Significant difference Hebbian
F1-Score 0.178 0.016 0.052 0.030 0.000 Significant difference Hebbian

Table 7. Parameters: LR: 0.05, Thresh: 0.7.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.260 0.010 0.873 0.018 0.000 Significant difference Quantum
Precision 0.100 0.011 0.103 0.056 0.105 No Significant difference Quantum

Recall 0.799 0.038 0.035 0.022 0.000 Significant difference Hebbian
F1-Score 0.177 0.018 0.052 0.030 0.000 Significant difference Hebbian

Table 8. Parameters: LR: 0.1, Thresh: 0.3.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.260 0.009 0.873 0.016 0.000 Significant difference Quantum
Precision 0.101 0.010 0.106 0.055 0.001 Significant difference Quantum

Recall 0.801 0.037 0.037 0.022 0.000 Significant difference Hebbian
F1-Score 0.179 0.017 0.054 0.030 0.000 Significant difference Hebbian

Table 9. Parameters: LR: 0.1, Thresh: 0.5.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.260 0.009 0.873 0.017 0.000 Significant difference Quantum
Precision 0.100 0.010 0.103 0.054 0.096 No Significant difference Quantum

Recall 0.799 0.038 0.035 0.022 0.000 Significant difference Hebbian
F1-Score 0.177 0.016 0.052 0.030 0.000 Significant difference Hebbian

Table 10. Parameters: LR: 0.1, Thresh: 0.7.

Metric Hebbian_Mean Hebbian_SD Quantum_Mean Quantum_SD P-value Significance Better
Model

Accuracy 0.261 0.009 0.871 0.018 0.000 Significant difference Quantum
Precision 0.101 0.010 0.103 0.053 0.160 No Significant difference Quantum

Recall 0.801 0.038 0.038 0.024 0.000 Significant difference Hebbian
F1-Score 0.179 0.017 0.055 0.031 0.000 Significant difference Hebbian
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Fig. (3). Accuracy comparison for hebbian and quantum-inspired models.

Learning  Rate  =  0.01,  threshold  =  0.5:  Significant
differences were observed across all performance metrics,
with  the  Quantum-Inspired  model  outperforming  the
Hebbian  model  in  accuracy  (p-value  =  0),  precision  (p-
value = 0.0001814474), recall (p-value = 0), and F1-Score
(p-value = 0).

Learning Rate = 0.01, Threshold = 0.7: The Quantum-
Inspired model showed superior performance in accuracy
(p-value = 0), precision (p-value = 3.03993e-07), recall (p-
value = 0), and F1-Score (p-value = 0).

Learning Rate = 0.05, Threshold = 0.3: The paired t-
tests revealed significant differences in accuracy (p-value
= 0), precision (p-value = 0.0308836), recall (p-value = 0),
and  F1-Score  (p-value  =  0),  with  the  Quantum-Inspired
model outperforming the Hebbian model.

Learning  Rate  =  0.05,  Threshold  =  0.5:  Significant
differences were found in accuracy (p-value = 0), recall (p-
value = 0), and F1-Score (p-value = 0). The difference in
precision  was  not  statistically  significant  (p-value  =
0.446183).

Learning  Rate  =  0.05,  Threshold  =  0.7:  For  this
setting,  the  Quantum-Inspired  model  demonstrated
significant improvements in accuracy (p-value = 0), recall
(p-value = 0),  and F1-Score (p-value = 0).  The precision
difference was not significant (p-value = 0.1049729).

Learning  Rate  =  0.1,  Threshold  =  0.3:  Significant
differences were observed in all metrics: accuracy (p-value
= 0), precision (p-value = 0.001357172), recall (p-value =
0), and F1-Score (p-value = 0), with the Quantum-Inspired
model outperforming the Hebbian model.

Learning  Rate  =  0.1,  threshold  =  0.5:  The  paired  t-
tests showed significant differences in accuracy (p-value =
0),  recall  (p-value = 0),  and F1-Score (p-value = 0).  The
difference  in  precision  was  not  significant  (p-value  =
0.09605692).

Learning  Rate  =  0.1,  Threshold  =  0.7:  Significant
differences were found in accuracy (p-value = 0), recall (p-
value = 0), and F1-Score (p-value = 0). The difference in
precision was not significant (p-value = 0.1596154).

3.4 Interpretation of Results
The results of the simulations indicate that while the

Quantum-Inspired  model  consistently  outperforms  the
traditional Hebbian model in several key metrics, certain
nuances are important to highlight.

Accuracy: The Quantum-Inspired model demonstrated
significantly  higher  accuracy  across  all  parameter
combinations.  This  indicates its  superior  ability  to recall
the  presented  patterns  correctly,  thereby  reducing  false
positives  and  negatives.  The  probabilistic  and  parallel
processing capabilities of quantum models allow for more



10   The Open Bioinformatics Journal, 2025, Vol. 18 Kyriazos and Poga

efficient  solution  space  exploration,  leading  to  more
accurate  pattern  recognition.

Precision:  The  Quantum-Inspired  model  generally
showed  higher  precision,  although  the  differences  were
not always statistically significant. This suggests that both
models have a similar capacity to identify positive patterns
when  present  correctly.  The  higher  precision  in  the
Quantum  model  can  be  attributed  to  its  conservative
approach,  which  reduces  false  positives.

Recall:  Interestingly,  the  Hebbian  model  exhibited
higher  recall  than  the  Quantum-Inspired  model  in  all
scenarios.  Hebbian  learning  strengthens  synaptic
connections  through  simultaneous  activations,  ensuring
robust  recall  of  learned  patterns.  This  strong
reinforcement leads to higher recall values, as the model
reliably activates the correct neurons for learned patterns.
However,  this  can  also  result  in  overfitting,  where  the
model  performs  exceptionally  well  on  training  data  but
may not generalize as effectively.

F1-Score: The F1-Score, a harmonic mean of precision
and recall,  was also  higher  for  the Hebbian model  in  all
scenarios. This is directly tied to its higher recall. Despite
the  Quantum-Inspired  model's  balanced  performance  in
precision and recall, the Hebbian model's superior recall
often gave it an edge in F1-Score. However, this does not
negate  the  overall  robustness  and  reliability  of  the
Quantum  model  in  pattern  recall  tasks.

Overall  Performance:  The  Quantum-Inspired  model
emerged  superior  in  accuracy  and  general  robustness
across  varying parameter  settings.  The Hebbian model's
higher  recall  and  F1-Score  highlight  its  strength  in
reinforcing  learned  patterns  but  also  underscore  its
susceptibility  to  overfitting.  These  findings  suggest  that
while  Quantum-Inspired  approaches  offer  significant
potential for enhancing neural network models, there are
specific scenarios where traditional Hebbian learning may
still be advantageous, particularly in tasks requiring high
recall (Figs. 3-6).

Fig. (4). Precision comparison for hebbian and quantum-inspired models.
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Fig. (5). Recall comparison for hebbian and quantum-inspired models.

Fig. (6). F1-Score comparison for hebbian and quantum-inspired models.
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A detailed appendix includes step-by-step calculations
and  the  R  programming  code  used  in  this  study
(Supplementary  material).  This  supplementary  material
allows readers to replicate the analyses and gain a deeper
understanding of the practical application of the quantum-
inspired  and  Hebbian  learning  models  discussed.
Moreover,  by  making  this  code  available,  we  aim  to
facilitate further exploration and validation of our findings
within the research community.

This bar chart compares the accuracy of the Hebbian
and  Quantum-Inspired  models  across  different  learning
rates  and  thresholds.  The  Quantum-Inspired  model
consistently shows higher accuracy, indicating its superior
ability to recall the presented patterns correctly.

This bar chart compares the precision of the Hebbian
and  Quantum-Inspired  models  across  different  learning
rates  and  thresholds.  While  the  differences  in  precision
are  less  pronounced,  the  Quantum-Inspired  model
generally  shows  higher  precision,  suggesting  a  better
capacity  to  identify  positive  patterns  correctly.

This bar chart compares the recall of the Hebbian and
Quantum-Inspired models across different learning rates
and thresholds. The Hebbian model exhibits higher recall
in  certain  cases,  highlighting  its  effectiveness  in
identifying  true  positive  patterns.

This bar chart compares the F1 scores of the Hebbian
and  Quantum-Inspired  models  across  different  learning
rates and thresholds. The Hebbian model shows higher F1
scores  in  specific  instances,  although  the  Quantum-
Inspired  model  performs  robustly,  combining  precision
and  recall  effectively.

4. DISCUSSION

4.1. Answer to Primary Research Objectives
The primary objectives of this study were to evaluate

and  compare  the  performance  of  traditional  Hebbian
learning  models  and  Quantum-Inspired  learning  models
across various learning conditions. Specifically, we aimed
to compare learning performance, evaluate generalization
capabilities,  analyze  robustness,  and  identify  key
performance metrics using accuracy, precision, recall, and
F1-Score.

Regarding  learning  performance,  the  simulations
indicated  that  the  Quantum-inspired  learning  models
consistently  outperformed  the  Hebbian  models.  This
superiority was evident from the accuracy metrics, where
the Quantum-Inspired models demonstrated significantly
higher values across all combinations of learning rates and
thresholds.  The  faster  convergence  of  Quantum-inspired
models  can  be  attributed  to  the  parallelism  inherent  in
quantum  computations,  which  allows  these  models  to
explore  multiple  potential  solutions  simultaneously  and
more efficiently than the sequential updates characteristic
of traditional Hebbian models [55, 56].

Regarding generalization capabilities, the performance
of the models on distorted versions of the training patterns
also favored the Quantum-Inspired models. The accuracy

metrics, which reflect the models' ability to identify true
positive  patterns  correctly,  were  consistently  higher  for
Quantum-Inspired  models.  This  suggests  that  these
models are better equipped to handle variations in input
patterns,  likely  due  to  their  probabilistic  nature  and the
incorporation  of  superposition  and  entanglement,  which
enable  the  creation  of  broader  and  more  holistic
representations  of  learned  patterns  [57,  58].

When  examining  robustness,  the  Quantum-Inspired
models  again  demonstrated  superior  performance.  By
varying the learning rate and activation threshold, it was
observed  that  these  models  showed  less  variability  in
performance metrics across different parameter settings,
indicating greater robustness. In contrast, while Hebbian
models  performed  reasonably  well  under  certain
parameter settings, their performance was more sensitive
to  learning  rate  and  threshold  changes.  This  sensitivity
can  lead  to  instability,  particularly  at  higher  learning
rates, where Hebbian models were prone to overshooting
and failed to converge effectively [59, 60].

The assessment of performance metrics revealed that
the Quantum-Inspired models exhibited superior accuracy
and  precision  across  all  tested  parameter  settings.
However, the Hebbian models consistently showed higher
recall  and  F1-Score,  indicating  their  effectiveness  in
reinforcing learned patterns and resulting in higher recall
values and better overall F1 scores [61, 62].

In  summary,  the  Quantum-Inspired  learning  models
demonstrated  greater  learning  performance,  better
generalization  capabilities,  and  higher  robustness  than
traditional Hebbian models. These findings underscore the
potential  advantages  of  integrating  quantum  principles
into  neural  network  frameworks,  offering  a  promising
future  direction  for  research  and  development.

4.2. Recall and F1-Score
While  Quantum-Inspired  models  consistently

demonstrated  superior  accuracy  and  generalization
capabilities  [63],  our  results  indicated  that  Hebbian
models  often  outperformed  in  recall  and  F1-Score  [64].
This phenomenon can be attributed to several factors:

The  Hebbian  learning  rule's  focus  on  strengthening
synaptic  connections  through  simultaneous  activations
ensures  that  once  a  pattern  is  learned,  it  is  robustly
recalled,  leading  to  higher  recall  values.

Hebbian  models  might  be  more  prone  to  overfitting,
leading to high recall of the training data. Overfitting can
inflate  recall  because  the  model  becomes  very  good  at
identifying patterns it has seen before, even if it does not
generalize well to new data.

Quantum-inspired  models  incorporate  probabilistic
elements,  introducing  variability  in  recalling  exact
patterns.  This  can  lead  to  reduced  recall  as  the  model
might  not  always  retrieve  the  exact  learned  pattern
perfectly.  The  probabilistic  approach  improves
generalization  but  may  slightly  reduce  recall.
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Quantum-inspired  models'  probabilistic  activation
thresholds  might  make  them  more  conservative  in
recalling patterns, leading to lower recall but potentially
higher  precision  as  they  effectively  avoid  false  positives
[65].

These  insights  suggest  a  trade-off  between  the
Hebbian models' deterministic, high-recall nature and the
Quantum-Inspired  models'  probabilistic,  high-accuracy
nature. Future research could explore hybrid models that
leverage  the  strengths  of  both  approaches,  potentially
overcoming  their  limitations.

4.3. Theoretical Implications
The  results  of  this  study  have  several  theoretical

implications for the field of neural network research. First,
they validate the hypothesis that quantum-inspired models
can overcome some fundamental limitations of traditional
Hebbian  learning  [66].  The  probabilistic  nature  of
quantum models [67], which allows for exploring multiple
solution  spaces  simultaneously,  provides  a  more  flexible
and powerful framework for learning and generalization.

Moreover,  incorporating  quantum  principles  such  as
superposition and entanglement into learning models [68]
challenges traditional deterministic approaches and opens
up  new  avenues  for  theoretical  exploration.  These
principles  enable  the  creation  of  more  complex  and
interconnected representations within the neural network,
facilitating  more  robust  learning  and  adaptation
processes.

Additionally,  the  study  contributes  to  the  ongoing
discourse  on  biological  plausibility  in  neural  network
models.  While Quantum-Inspired models are not directly
analogous  to  biological  processes  [69],  their  superior
performance suggests that incorporating principles from
quantum  mechanics  can  enhance  our  understanding  of
learning mechanisms. This interdisciplinary approach may
lead to novel insights into how biological systems leverage
quantum-like processes, even if such mechanisms are not
yet fully understood or observed in neurobiology.

Further  investigation  into  quantum-like  processes  in
biological  neural  systems  could  bridge  the  gap  between
artificial  quantum-inspired  models  and  real  neural
computations. Experimental studies in neuroscience could
provide  insights  into  whether  biological  neurons  exhibit
probabilistic or entanglement-like behavior at a functional
level.

4.4. Practical Implications
The  practical  implications  of  these  findings  are

significant,  particularly  in  developing more efficient  and
capable  artificial  intelligence  systems  [70].  Quantum-
inspired  models'  demonstrated  superiority  in  learning
efficiency and generalization suggests that these models
could be applied to a wide range of tasks where traditional
neural networks have struggled.

For instance, Quantum-inspired models could enhance
pattern recognition systems, making them more robust to
variations  and  distortions  in  input  data  [71].  This  has

potential applications in fields such as image and speech
recognition, where the ability to generalize from noisy or
incomplete data is crucial.

Furthermore,  Quantum-Inspired  models'  increased
stability and robustness make them suitable for real-time
applications  with  limited  computational  resources  and
time [72, 73]. Their ability to quickly converge to accurate
solutions  could  improve  the  performance  of  systems  in
dynamic environments [74], such as autonomous vehicles
and adaptive control systems.

Integrating  quantum  principles  into  neural  network
[34]  frameworks  also  holds  promise  for  advancing  the
capabilities of cognitive computing systems. By leveraging
the  inherent  parallelism  and  probabilistic  nature  of
quantum computations, these systems can achieve higher
levels  of  intelligence  and  adaptability,  approaching  the
complexity and flexibility of human cognition more closely.

4.5. Limitations
Despite  the  promising  results,  this  study  has  several

limitations  that  should  be  acknowledged.  First,  the
simulations used a fixed number of neurons and patterns
to  maintain  computational  feasibility  [75].  While  this
approach allowed for meaningful comparisons, it does not
fully  capture  the  scalability  challenges  that  might  arise
with larger networks.

Second,  the  Quantum-inspired  models  were
implemented using classical computing resources, which
may not fully exploit the potential advantages of quantum
computations  [76].  Future  studies  could  benefit  from
utilizing  actual  quantum  computers  or  more  advanced
quantum simulation techniques to better understand the
full capabilities of these models.

Third,  the  study  focused  on  a  specific  set  of
parameters:  learning  rate  and  threshold.  While  these
parameters  are  crucial  for  understanding  the  models'
behavior,  other  factors,  such  as  network  topology,  input
pattern complexity, and noise levels, were not extensively
explored.  These  factors  could  significantly  impact  the
performance and applicability of the models in real-world
scenarios [77].

Finally, the biological plausibility of Quantum-Inspired
models remains a contentious issue [78]. While the models
demonstrated superior performance, their direct relevance
to biological neural systems is poorly established. Future
research  should  aim  to  bridge  this  gap  by  exploring
potential quantum-like processes in biological neurons and
integrating  these  findings  into  developing  more
biologically  plausible  models.

4.6. Future Research
Building on the findings of this study, several avenues

for future research can be identified. First, expanding the
simulations  to  include  larger  and  more  complex  neural
networks  would  provide  a  deeper  understanding  of  the
scalability  and  robustness  of  Quantum-Inspired  models
[79]. This could involve varying the network topology and
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introducing  more  diverse  input  patterns  to  test  the
models'  generalization  capabilities  under  different
conditions.

Second,  exploring  the  integration  of  actual  quantum
computing resources into implementing Quantum-Inspired
models  would  be  a  critical  step  forward  [80].  By
leveraging  the  full  power  of  quantum  computers,
researchers can better understand these models' practical
benefits and limitations in real-world applications.

Third, future research should investigate the potential
quantum-like  processes  in  biological  neural  systems.
Empirical studies in neurobiology could provide valuable
insights  into  how  biological  systems  might  leverage
quantum  principles,  informing  the  development  of  more
biologically plausible quantum-inspired models [69].

Additionally, exploring hybrid models that combine the
strengths  of  traditional  Hebbian  learning  and  Quantum-
Inspired  approaches  could  lead  to  more  versatile  and
effective neural network frameworks. These hybrid models
could  leverage  the  stability  and  biological  plausibility  of
Hebbian  learning  while  incorporating  the  efficiency  and
generalization capabilities of quantum-inspired principles.

Additionally,  expanding  the  application  of  Quantum-
Inspired models to diverse fields such as natural language
processing,  robotics,  and  medical  diagnostics  would
further validate their practical utility and highlight areas
for  refinement  [81-83].  Collaborations  with  industry
partners could accelerate the transition from theoretical
research  to  real-world  implementation.  Future  studies
should  explore  these  models  using  real-world  datasets,
including  biomedical  imaging,  financial  forecasting,  and
autonomous  systems,  to  assess  their  effectiveness  in
practical  scenarios.  Evaluating their  performance across
these  domains  would  provide  deeper  insights  into  their
robustness  and  potential  integration  into  AI-driven
technologies.

CONCLUSION
This  study  has  demonstrated  that  quantum-inspired

learning  models  provide  significant  advantages  over
traditional Hebbian learning models in terms of efficiency,
accuracy,  and  precision.  Quantum-inspired  models,  by
leveraging  principles  such  as  superposition  and
entanglement, offer a robust and efficient framework for
neural  network  learning.  However,  Hebbian  models
consistently  showed  higher  recall  and  F1-Score,
underscoring  their  strong  reinforcement  of  learned
patterns  and  effectiveness  in  identifying  positive  cases.

When  accuracy  is  the  primary  concern,  quantum-
inspired  models  are  consistently  better,  suggesting  they
are  more  reliable  in  correctly  predicting  both  classes.
When precision is critical, quantum-inspired models often
have  better  precision,  meaning  they  have  fewer  false
positives, although the difference is not always significant.
When  recall  is  essential,  Hebbian  models  are  better,
indicating they  are  more effective  in  identifying positive
cases,  which  is  crucial  in  scenarios  such  as  medical
diagnoses.  When  a  balance  of  precision  and  recall  is

needed, as reflected by the F1-Score, Hebbian models are
better,  making  them  preferable  in  contexts  where  false
positives and false negatives must be minimized.

The  findings  suggest  that  incorporating  quantum
principles  into  neural  network  frameworks  can
substantially  enhance  their  performance,  particularly  in
tasks  requiring  high  accuracy  and  generalization.
Nonetheless,  the strengths of  Hebbian learning in recall
and pattern reinforcement should not be underestimated.
Future research should focus on developing hybrid models
that  combine  the  stability  and  biological  plausibility  of
Hebbian  learning  with  the  efficiency  and  adaptability  of
quantum-inspired models.

In  conclusion,  the  interdisciplinary  approach  of
combining principles from neuroscience, quantum physics,
and  artificial  intelligence  holds  substantial  potential  for
advancing  our  understanding  of  neural  computation.
Developing more robust,  efficient,  and adaptive learning
algorithms can drive significant advancements in artificial
intelligence,  enhancing  these  systems'  capabilities  to
learn,  adapt,  and  generalize  in  complex  environments.
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